Effect of Crop Residue on Seedling Emergence and Growth of Selected Weed Species in a Sprinkler-Irrigated Zero-Till Dry-Seeded Rice System

Weed Science ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 403-409 ◽  
Author(s):  
Bhagirath S. Chauhan ◽  
Seth B. Abugho

Crop residues acting as mulches can influence weed seedling emergence and weed biomass. A field study was conducted to evaluate the effect of rice residue amounts (0, 3, and 6 t ha−1) on seedling emergence of eight weed species in zero-till dry-seeded rice. The highest seedling emergence of spiny amaranth, southern crabgrass, crowfootgrass, junglerice, eclipta, goosegrass, and Chinese sprangletop was observed in the absence of residue. Seedling emergence of these weeds declined with increasing residue amounts; however, the greatest and most substantial reductions in emergence occurred with 6 t ha−1of residue. The presence of residue also resulted in less weed biomass than with the no-residue treatment. The emergence and biomass of threelobe morningglory seedlings, however, were not influenced by residue amounts. The use of residue also increased the time taken to reach 50% of maximum emergence for some species, for example, spiny amaranth and Chinese sprangletop. The results of our study suggest that the use of residue at high rates can help suppress seedling emergence and growth of many weeds. However, there is a need to integrate other weed management strategies with residue retention to achieve season-long weed control.

2018 ◽  
Vol 36 (0) ◽  
Author(s):  
A.L. NUNES ◽  
J. LORENSET ◽  
J.E. GUBIANI ◽  
F.M. SANTOS

ABSTRACT: A 3-year field study was conducted to assess the potential for using pre-emergent (PRE) herbicides tank mixed with glyphosate as a means of controlling weed species in soybean. In 2011/12, 2012/13 and 2013/14 growing sessions soybean cultivar Brasmax Apollo RR was planted under residues of rye. The herbicide treatments glyphosate (gly) (1,296 g a.i. ha-1), gly + S-metolachlor (1,296 + 1,920), gly + imazaquin (1,296 +161), gly + pendimethalin (1,296 + 1,000), gly + metribuzin (1,296 + 480), gly + 2.4-D amine (1,296 + 1,209) was applied in pre-emergence (PRE) over rye crop residues two days before soybean sowing. In addition, full season weed-free and weedy control plots were included. Gly + S-metolachlor and gly + pendimethalin reduced the horseweed density from 48 to 3 and 6 plants m-2, respectively. The mix containing gly + metribuzin and gly + 2.4-D amine and gly applied alone had no effect in the horseweed control. The mix containing gly + metribuzin, gly + 2.4-D amine, gly + imazaquin and gly applied alone had no effect in the crabgrass control. In contrast gly + S-metolachlor and gly + pendimethalin reduced the crabgrass density from 70 to 0 and 1 plant m-2, respectively. The soybean yield was higher with weed-free, S-metolachlor and metribuzin treatments. The use of an herbicide with residual effect had impact on weed management and soybean yield. In conclusion, a greater control of horseweed and crabgrass occurred when S-metolachlor or pendimethalin was applied PRE.


2012 ◽  
Vol 26 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Anil Shrestha ◽  
Marcelo Moretti ◽  
Nathalia Mourad

Sustainable weed management strategies are needed for organic orchard systems. A study was conducted in an almond orchard in Fresno, CA from 2009 to 2011. Treatment comparisons included steam, flame, and broad applications of either lemongrass oil or D-limonene. An untreated control was also included. The experimental design was a randomized complete block with four replications. Weekly evaluations on percent weed control were taken and weed biomass was sampled 4 to 8 wk after treatment (WAT). Weed control and biomass differed between seasons but, in general, steam and flame provided as much as 95% control 1 WAT. However, the effects lasted only 3 to 4 wk as new weeds emerged or the treated weeds overcame the suppressive effects of the thermal treatments. Weed biomass was 95% lower in the steam- and flame-treated plots compared with the untreated plots in summer. Both steam and flame were more effective on certain erect-growing broad-leaved weed species than on prostrate-growing weeds and grasses. Lemongrass oil provided very little weed control. However, D-limonene provided up to 95% weed control 1 WAT and in one experiment 53% control was observed up to 5 WAT. This herbicide also resulted in lower weed biomass than the untreated and the thermal-treated plots. Monthly applications of steam or flame or applications of D-limonene every 5 to 6 wk may have to be made to adequately suppress weeds in organic almond orchards. Cost estimates of propane use were $41 to 56 ha−1 and $26 ha−1 for the steam and flame treatments, respectively. The cost of D-limonene was estimated as $275 ha−1. To optimize weed control and costs, these tools may need to be used in combination rather than by themselves.


Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 595-603 ◽  
Author(s):  
Martin M. Williams ◽  
David A. Mortensen ◽  
John W. Doran

Cover crop residues are not widely used for weed control because, as a stand-alone tactic, they do not effectively suppress all weeds and their duration of weed control is too short. Field experiments were conducted in 1995 and 1996, under both irrigated and rainfed conditions, to quantifyAmaranthusspp.,Setariaspp., and soybean emergence and growth in residues of fall-planted, spring-killed barley, rye, triticale, wheat, and hairy vetch. For both weed species, seedling emergence was reduced 3 wk after soybean planting by rye and wheat residues (≥ 2, 170 kg ha−1) in 1996. In 1996,Amaranthusspp. canopy volume was reduced 38 to 71% by residues 3 wk after planting. Likewise,Setariaspp. canopy biomass was reduced 37 to 97% in residues 5 wk after planting over both years. The response comparison index was used to identify frequency by which weed growth was placed at a disadvantage relative to soybean growth.Amaranthusspp. andSetariaspp. growth suppressions 3 to 5 wk after planting indicate potential times for intervention with other integrated weed management tactics such as reduced postemergence herbicide rates and interrow cultivation.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 671
Author(s):  
Jane Kelly ◽  
Allison Chambers ◽  
Paul Weston ◽  
William Brown ◽  
Wayne Robinson ◽  
...  

Barley grass (Hordeum murinum subsp. glaucum.) is an annual weed associated with grain revenue loss and sheep carcass damage in southern Australia. Increasing herbicide resistance led to a recent investigation into effective integrated weed management strategies for barley grass in southern Australia. Field studies in Wagga Wagga, New South Wales (NSW) during 2016 and 2017 examined the effect of post-emergent herbicide applications and strategic defoliation by mowing on barley grass survival and seed production in a mixed legume pasture. Statistically significant differences between herbicide-only treatments in both years showed propaquizafop to be more than 98% effective in reducing barley grass survival and seed production. Paraquat was not effective in controlling barley grass (58% efficacy), but led to a 36% and 63.5% decrease in clover and other weed biomass, respectively, after 12 months and increased lucerne biomass by over three-fold after 24 months. A single repeated mowing treatment resulted in a 46% decline in barley grass seedling emergence after 12 months and, when integrated with herbicide applications, reduced other weed biomass after 24 months by 95%. Resistance to acetyl-CoA carboxylase (ACCase)-inhibiting herbicides observed in local barley grass populations led to additional and more focused investigation comparing the efficacy of other pre- and post-emergent herbicides for barley grass management in legume pastures. Haloxyfop-R + simazine or paraquat, applied at early tillering stage, were most efficacious in reducing barley grass survival and fecundity. Impact of defoliation timing and frequency on barley grass seedlings was also evaluated at various population densities, highlighting the efficacy of repeated post-inflorescence defoliations in reducing plant survival and seed production. Results highlight the importance of optimal environmental conditions and application timing in achieving efficacious control of barley grass and improving pasture growth and biomass accumulation.


2020 ◽  
Author(s):  
Akashdeep Singh ◽  
S. S. Rana ◽  
Anju Bala

Chickpea (Cicer arietinum) is one of the most important pulse crops but it’s productivity in India is quite low. There are various reasons for low productivity. Weed control is the basic requirement and the major component of crop management. Weeds on an average reduce the crop yield by 40-87 per cent. Deciding time to control weeds requires detailed knowledge of the weed populations in the field. Different management practices like altering spacing, competitive cultivars, etc. can help in enhancing the productivity. With the world entering the precision-farming era, more emphasis is being put on the use of post-emergence herbicides. Application of two or more herbicide at the same time or as a double knockdown and integrating with hand-weeding provides desirable control of different weed species besides reducing the hazard of chemical weed control.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1071E-1072
Author(s):  
Anthony Silvernail

Organic weed control in direct seeded vegetables depends on management strategies that control weed germination or growth which depletes the weed seedbank. In 2004, a randomized complete-block experiment conducted on land transitioning to organic production examined the effects of tillage and control treatments on weed pressure in sweet corn [Zeamays (L.) cv. Silver Queen]. The two tillage treatments consisted of conventional (moldboard and rototill) and spader tillage. Weed control treatments included a weed free control, a spring-tine weeder, rolling cultivator, row flamer, stale seedbed, and corn gluten meal. In August, the weed infestation was primarily goose grass [Eleusineindica (L.) Gaertn.], crab grass [Digitariasanguinalis (L.) Scop.], giant foxtail (Setariafaberi Herrm.), and smooth pigweed [Amaranthushybridus (L.)] species. Dried weed weights indicated that smooth pigweed constituted about 80% of the total weed biomass in all but the control and flamer treatments. Plots managed with the spring-tine weeder or corn gluten had twice the weed biomass of those managed with the rolling cultivator and flamer. The rolling cultivator and control treatments produced equivalent husked corn yields (6.9 t·ha-1); yields were reduced by the other weed control methods. At 5.4 t·ha-1, yields in the flamer treatment were the lowest among all weed control methods. The flamer suppressed both weeds and the crop, which may preclude its utility for sweet corn production. Results demonstrated that the rolling cultivator provided the best weed control without negatively affecting potential yields.


2013 ◽  
Vol 27 (1) ◽  
pp. 241-254 ◽  
Author(s):  
Virender Kumar ◽  
Samar Singh ◽  
Rajender S. Chhokar ◽  
Ram K. Malik ◽  
Daniel C. Brainard ◽  
...  

In the rice–wheat (RW) systems of the Indo-Gangetic Plains of South Asia, conservation tillage practices, including zero-tillage (ZT), are being promoted to address emerging problems such as (1) shortages of labor and water, (2) declining factor productivity, (3) deterioration of soil health, and (4) climate change. Despite multiple benefits of ZT, weed control remains a major challenge to adoption, resulting in more dependence on herbicides for weed control. Alternative management strategies are needed to reduce dependence on herbicides and minimize risks associated with their overuse, including evolution of herbicide resistance. The objectives of this review are to (1) highlight and synthesize research efforts in nonchemical weed management in ZT RW systems and (2) identify future weed ecology and management research needs to facilitate successful adoption of these systems. In ZT RW systems, crop residue can play a central role in suppressing weeds through mulch effects on emergence and seed predation. In ZT rice, wheat residue mulch (5 t ha−1) reduced weed density by 22 to 76% and promoted predation of RW weeds, including littleseed canarygrass and barnyardgrass seeds. For ZT wheat, rice residue mulch (6 to 10 t ha−1) in combination with early sowing reduced emergence of littleseed canarygrass by over 80%. Other promising nonchemical approaches that can be useful in suppressing weeds in ZT RW systems include use of certified seeds, weed-competitive cultivars, stale seedbed practices, living mulches (e.g., sesbania coculture), and water and nutrient management practices that shift weed–crop competition in favor of the crop. However, more research on emergence characteristics and mulching effects of different crop residues on key weeds under ZT, cover cropping, and breeding crops for weed suppression will strengthen nonchemical weed management programs. Efforts are needed to integrate multiple tactics and to evaluate long-term effects of nonchemical weed management practices on RW cropping system sustainability.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 163
Author(s):  
Nebojša Nikolić ◽  
Donato Loddo ◽  
Roberta Masin

Weed behaviour in crop fields has been extensively studied; nevertheless, limited knowledge is available for particular cropping systems, such as no-till systems. Improving weed management under no-till conditions requires an understanding of the interaction between crop residues and the seedling emergence process. This study aimed to evaluate the influence of maize and wheat residues, applied in three different quantities (1, the field quantity, 0.5, and 1.5-fold amounts of the field quantity), on the emergence of eight weed species: Abutilon theophrasti, Amaranthus retroflexus, Chenopodium album, Digitaria sanguinalis, Echinochloa crus-galli, Setaria pumila, Sonchus oleraceus, and Sorghum halepense. The experiment was conducted over two consecutive years. The results showed that the quantities 1 and 1.5 could suppress seedling emergence by 20 and 44%, respectively, while the quantity 0.5 seems to promote emergence by 22% compared with the control without residues. Weed species showed different responses to crop residues, from C. album showing 56% less emergence to S. halepense showing a 44% higher emergence than the control without residues. Different meteorological conditions in the two-year experiment also exhibited a significant influence on weed species emergence.


CORD ◽  
2019 ◽  
Vol 35 (01) ◽  
pp. 8
Author(s):  
S.H.S. Senarathne

Pennisetum polystachion is a major problematic monocotyledonous weed species and a perennial problem in intermediate zone of coconut plantations in Sri Lanka. This study was carried out to evaluate the impacts of different management systems on P. polystachion seedling emergence patterns.The tested treatments were application of glyphosate (T1), cover cropping with Pueraria phaseoloides (T2), tractor harrowing (T3), tractor slashing (T4) and tractor ploughing (T5). All the treatments were applied twice a year except T2. As T2 cover crop at the initiation of the experiment and over grown conditions were managed by harrowing once a year. Based on the reduction in weed biomass, cover cropping (T2) was the best to reduce the P. polystachion population and to reduce P. polystachion seedling emergence density in the field. Chemical weeding was the second-best method to control the P. polystachion population in the field. The effectiveness of slashing in reducing weed seedling emergence density was lower than cover cropping and chemical weeding methods. The weed seedling emergence densities were almost similar in ploughed and harrowed plots. The seed depth of emerged seedling was very high in harrowed and ploughed treatments when compared to other treatments. Results given by T3 and T5 indicates that loosening the soil creates more favorable environment for the germination of weed seeds buried in soil. Therefore, it can be argued that the elimination of weed seeds in the top 2cm or 4cm in the soil seed bank by any means is likely to reduce the level of weed infestation by about 60% to 95%. Results also indicated that burying rhizomes in ploughing and harrowing treatment plots at the depths below 30 - 40 cm is effective in controlling germination of this weed species. This experiment also suggested that keeping rhizomes on the soil surface without burying for durations of 5 – 15 days would produce weak plants with poor development.


Weed Science ◽  
2015 ◽  
Vol 63 (2) ◽  
pp. 491-501 ◽  
Author(s):  
Sharif Ahmed ◽  
Jhoana L. Opeña ◽  
Bhagirath S. Chauhan

This study was conducted in the laboratory and screenhouse to determine the effects of temperature, light, osmotic stress, salt stress, burial depth, use of crop residues as mulch, depth of flooding, and use of POST herbicides on the emergence, survival, and growth of doveweed. In the light/dark regime, germination was higher at alternating day/night temperatures of 35/25 C (95%) than at 30/20 C (72%), and no germination occurred at 25/15 C. Light strongly influenced germination (95%) and dark completely inhibited germination. No germination occurred at an osmotic potential of −0.8 MPa and a salt concentration of 150 mM and above. The highest germination (91%) was observed from the seeds sown on the soil surface and emergence decreased by 78, 86, and 92% when burial depths were increased to 0.5, 1, and 2 cm, respectively. No seedlings emerged from seeds buried at depths of more than 2 cm. The use of rice residues as mulch significantly reduced the emergence and growth of doveweed seedlings. The amount of residue required to suppress 50% of the maximum biomass was 2.5 t ha−1. Flooding had a more pronounced effect on seedling biomass than seedling emergence. Biomass was reduced by 78, 92, and 96% when flooding depths increased from 0 to 2, 4, and 6 cm, respectively, for the seeds placed on the soil surface, whereas for the seeds buried at 0.5 cm, these values were 78, 100, and 100%. Bentazon (100 g ha−1) and bispyribac-sodium (30 g ha−1) provided 100% control of doveweed when applied at the three-leaf stage. Doveweed control was less than 31% with glyphosate rates up to 2,000 g ha−1. The application of 2,4-D (500 g ha−1) provided 100% control of doveweed even when applied at the seven-leaf stage. The information from this study could help in developing more sustainable and effective integrated weed management strategies for the control of this weed and weeds with similar response in dry-seeded rice systems.


Sign in / Sign up

Export Citation Format

Share Document