Numerical simulation of long-term radiation effects for MOSFETs

2013 ◽  
Vol 25 (4) ◽  
pp. 1031-1034
Author(s):  
韦源 Wei Yuan ◽  
谢红刚 Xie Honggang ◽  
贡顶 Gong Ding ◽  
朱金辉 Zhu Jinhui ◽  
牛胜利 Niu Shengli ◽  
...  
2017 ◽  
Vol 31 (9) ◽  
pp. 825-828 ◽  
Author(s):  
Rutveej Patel ◽  
Justin Dubin ◽  
Ephrem O. Olweny ◽  
Sammy E. Elsamra ◽  
Robert E. Weiss

2013 ◽  
Vol 353-356 ◽  
pp. 3707-3712
Author(s):  
Zhi Dong Zhou ◽  
Hong Bo Zhang ◽  
Xiu Guang Song ◽  
Hong Ya Yue

For analyzing and evaluating the deformation features of channel goaf foundation and its effect on superstructure, according to the foundation reinforcement engineering of Ji-Liang Channel Check Gate, the comparative analysis on the differential settlement between the unfavorable foundation and natural foundation was performed by numerical simulation with FLAC3D. The computer results showed that the present foundation had obvious effect on the stability and security of the superstructure, so the engineering treatment are needed. Based on technical-economic comprehensive analysis among three treatment methods for strengthening the channel golf foundation with different kinds of filling, the reasonable method is put forward in this paper. By comparing mechanical characteristic of flashboard in channel goaf before and after strengthening, we confirmed the foundation stability of channel goaf and the security of the ground building which can satisfy the long term usage requirements.


2019 ◽  
Vol 30 ◽  
pp. 10005
Author(s):  
Dmitry Gromov ◽  
Vadim Elesin

The investigation results of the GaAs microwave devices characteristics under pulse irradiation are presented. The study covers the field effect transistor with Schottky barrier, pseudomorphic high-electron mobility transistors and resonant tunnelling diodes implemented in GaAs technology processes. It has been demonstrated that GaAs MESFET, pHEMT and RTDs may show the long-term parameter recovery undo pulsed ionizing exposure.


Author(s):  
P. M. James ◽  
M. Berveiller

SOTERIA is focused on the ‘safe long term operation of light water reactors’. This will be achieved through an improved understanding of radiation effects in nuclear structural materials. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under agreement No 661913. The overall aim of the SOTERIA project is to improve the understanding of the ageing phenomena occurring in ferritic reactor pressure vessel steels and in the austenitic internals in order to provide crucial information to regulators and operators to ensure safe long-term operation (LTO) of existing European nuclear power plants (NPPs). SOTERIA has set up a collaborative research consortium which gathers the main European research centers and industrial partners who will combine advanced modelling tools with the exploitation of experimental data to focus on two major objectives: i) to identify ageing mechanisms when materials face environmental degradation (such as e.g. irradiation and corrosion) and ii) to provide a single platform containing data and tools for reassessment of structural components during NPPs lifetime. This paper provides an overview of the ongoing activities within the SOTERIA Project that are contained within the analytical work-package (WP5.3). These fracture aspects are focused on the estimates of fracture in both ferritic steels and irradiation assisted stress corrosion cracking (IASCC) in austenitic stainless steels, under irradiated conditions. This analytical development is supported by analytical estimates of irradiation damage and the resulting changes in tensile behaviour of the steels elsewhere in SOTERIA, as well as a wider number of experimental programmes. Cleavage fracture estimates are being considered by a range of modelling estimates including the Beremin, Microstructurally Informed Brittle Fracture Model (MIBF), JFJ and Bordet Models with efforts being made to understand the influence of heterogeneity on the predicted toughness’s. Efforts are also being considered to better understand ductile void evolution and the effect of plasticity on the cleavage fracture predictions. IASCC is being modelled through the INITEAC code previously developed within the predecessor project Perform 60 which is being updated to incorporate recent developments from within SOTERIA and elsewhere.


2016 ◽  
Vol 824 ◽  
pp. 544-551
Author(s):  
Martin Němeček ◽  
Miloš Kalousek

The article describes the summer thermal stability of a semidetached passive house in Moravany - Czech Republic. Long-term measurement was carried out on the uninhabited house. The house is divided into two symmetrically identical residential units. Indoor air temperature differences of these symmetrically identical rooms are compared. Comparative numerical simulation was also carried out.


Author(s):  
Juan B. V. Wanderley ◽  
Gisele H. B. Souza ◽  
Carlos Levi

Numerical simulations of Vortex Induced Vibration have been failing to duplicate accurately experimental data mostly due to the complexity of the physics involved in the real problem. Therefore, a careful and comprehensive investigation on CFD algorithms is still required to indicate the most suitable numerical scheme to handle such a complicate problem. Grid generation, boundary condition implementation, and coupling between the fluid flow governing equations and body motion equation are known to have strong influence on the qualities of the numerical results. This work presents results obtained from a long-term investigation featuring different CFD methods. The investigations enabled the selection of a very effective algorithm that showed an outstanding agreement between experiment and numerical simulation of the VIV phenomenon. Good agreement is obtained in the entire range of reduced velocity covered by the experimental investigations. The successful algorithm discussed here applies the Beam and Warming implicit scheme to solve the two-dimensional slightly compressible Navier–Stokes equations with the K-ε turbulence model to simulate the turbulent flow at the wake of the cylinder.


Sign in / Sign up

Export Citation Format

Share Document