Theoretical study and optimization design of high-power optical isolator permanent magnet system

2015 ◽  
Vol 27 (1) ◽  
pp. 11001
Author(s):  
胡姝玲 Hu Shuling ◽  
赵东伟 Zhao Dongwei ◽  
王欢欢 Wang Huanhuan ◽  
肖泽宇 Xiao Zeyu ◽  
牛燕雄 Niu Yanxiong
2020 ◽  
Vol 64 (1-4) ◽  
pp. 959-967
Author(s):  
Se-Yeong Kim ◽  
Tae-Woo Lee ◽  
Yon-Do Chun ◽  
Do-Kwan Hong

In this study, we propose a non-contact 80 kW, 60,000 rpm coaxial magnetic gear (CMG) model for high speed and high power applications. Two models with the same power but different radial and axial sizes were optimized using response surface methodology. Both models employed a Halbach array to increase torque. Also, an edge fillet was applied to the radial magnetized permanent magnet to reduce torque ripple, and an axial gap was applied to the permanent magnet with a radial gap to reduce eddy current loss. The models were analyzed using 2-D and 3-D finite element analysis. The torque, torque ripple and eddy current loss were compared in both models according to the materials used, including Sm2Co17, NdFeBs (N42SH, N48SH). Also, the structural stability of the pole piece structure was investigated by forced vibration analysis. Critical speed results from rotordynamics analysis are also presented.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1495-1504
Author(s):  
Fangchao Xu ◽  
Yongquan Guo ◽  
Ran Zhou ◽  
Junjie Jin ◽  
Chuan Zhao ◽  
...  

To solve the problem of reduction of suspension force of permanent magnet system with variable magnetic flux path control, according to the structure of the system, suspension principle of the permanent magnet system with variable magnetic flux path control and the generation principle of the load torque, the influence of the mechanical structure of the system on the suspension force is analyzed by changing part of parameters of the system structure. The results show that the existence of magnetic isolation plate is the main reason for the decrease of suspension force, the permanent magnet ring can be thickened to 11.91 mm, the annular gap can be reduced to 1 mm, thickness of the “F” shaped magnetizer can be increased to 9 mm to increase the suspension force.


2021 ◽  
Vol 11 (11) ◽  
pp. 4856
Author(s):  
Hae-Sol Lee ◽  
Myeong-Hwan Hwang ◽  
Hyun-Rok Cha

As unmanned aerial vehicles expand their utilization and coverage, research is in progress to develop low-weight and high-performance motors to efficiently carry out various missions. An electromagnetic field interior permanent magnet (IPM) motor was designed and analyzed in this study that improved the flight performance and flight duration of an unmanned aerial vehicle (UAV). The output power and efficiency of a conventional commercial UAV motor were improved by designing an IPM motor of the same size, providing high power output and high-speed operation by securing high power density, wide speed range, and mechanical stiffness. The cooling performance and efficiency of the drive motor were improved without requiring a separate power source for cooling by introducing the helical-grooved self-cooling case, which has a low heat generation structure. Furthermore, the motor is oil-cooled through rotating power without a separate power source, reducing the weight of the UAV. The heat dissipation characteristics were verified by fabricating a prototype and taking actual measurements to verify the validity of the heat dissipation characteristics. The results of this study are expected to improve the flight duration and performance of UAVs and contribute to the efficiency of the design of a UAV drive motor.


2013 ◽  
Vol 745-746 ◽  
pp. 197-202 ◽  
Author(s):  
Chang Qing Ye ◽  
Zi Gang Deng ◽  
Jia Su Wang

t was theoretically and experimentally proved that High Temperature Superconducting (HTS) Maglev had huge potential employment in rail transportation and high speed launch system. This had attracted great research interests in practical engineering. The optimization design was one of the most important works in the application of the HTS Maglev. As the NdFeB permanent magnet and HTS materials prices increased constantly, the design optimization of the permanent guideway (PMG) of HTS maglev became one of the indispensable works to decrease the cost of the application. This paper first reviewed four types of PMGs used by the HTS Maglev, then disucssed their structures and magnetic fields. Finally, the optimization methods of these four PMGs were compared. It was suggested that with better optimization methods, the levitation performance within a limit cost got better. That would be helpful to the future numerical optimization of the PMG of the HTS maglev.


Sign in / Sign up

Export Citation Format

Share Document