Thermal field distribution in fly-cutting of KDP crystal and its influence on chip morphology

2016 ◽  
Vol 24 (8) ◽  
pp. 1948-1955
Author(s):  
汪圣飞 WANG Sheng-fei ◽  
安晨辉 AN Chen-hui ◽  
张飞虎 ZHANG Fei-hui ◽  
游 雾 YOU Wu ◽  
雷向阳 LEI Xiang-yang
Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 855
Author(s):  
Chenhui An ◽  
Ke Feng ◽  
Wei Wang ◽  
Qiao Xu ◽  
Xiangyang Lei ◽  
...  

As an important nonlinear optical material, potassium dihydrogen phosphate (KDP) crystal is used in high-power laser beams as the core element of inertial confinement fusion. It is the most general method of single point diamond fly-cutting (SPDF) to produce high precision and crack-free KDP surfaces. Nevertheless, the cutting mechanism of such material remains unclear, and therefore needs further analysis. Firstly, the stress field, cutting force and cutting temperature under different working conditions are calculated by a KDP crystal cutting simulation model. Then, the rules and the cause of change and interaction mechanisms of force and temperature are analyzed by comparing the measurement experiments with simulations. Furthermore, the causes of chip formation and micro-cracks on the machined surface are analyzed based on thermo-mechanical coupling and chip morphology. The conclusion can be deduced: Although the temperature has not reached the phase transition temperature during the finishing process, under high cutting speeds and large unformed chip thickness, such as semi-finishing and roughing, the temperature can reach up to 180 °C or higher, and KDP crystals are very likely to phase transition—chip morphology also verifies this phenomenon.


2009 ◽  
Vol 407-408 ◽  
pp. 420-423
Author(s):  
He Ping Wang ◽  
Xue Ping Zhang

An explicit dynamic coupled thermal-mechanical Arbitrary Lagrangian Eulerian (ALE) model was established to simulate orthogonal cutting AISI 52100 bearing steel, and its temperature and stress distribution. Based on ABAQUS, The ALE approach effectively simulates plastic flow around round edge of the cutting tool without employing chip separation criteria. The calculation results reveal that cutting speed and cutting depth have great impact on chip morphology, stress and temperature distribution in the finished surface and subsurface, the predicted temperature agrees well with experiment data obtained under the similar cutting conditions as well as the change in chip morphology from continuous to sawtooth as the cutting speed increases.


2013 ◽  
Vol 690-693 ◽  
pp. 2030-2035
Author(s):  
Shu Bao Yang ◽  
Hong Chao Ni ◽  
Guo Hui Zhu

Ti6Al4V alloy is widely used in the aircraft industry, marine and the commercial applications due to its excellent comprehensive properties. However, its poor machinability prevents it from application widely, and the rapid tool wear is one of the key factors. The FEM models of cutting titanium alloy are established. The effect of tool wear on chip morphology, cutting temperature and cutting force are studied. The simulation results show that: the cutting force and cutting temperature will rise with the increase of tool wear. Furthermore, the degree of chip deformation will improve, but the frequency of serrated chip tooth occurred will decrease.


2019 ◽  
Vol 11 (8) ◽  
pp. 168781401987089 ◽  
Author(s):  
Yingshuai Xu ◽  
Zhihui Wan ◽  
Ping Zou ◽  
Qinjian Zhang

There are many problems and physical phenomena in turning process, like machined surface quality, cutting force, tool wear, and so on. These factors and the chip shape of workpiece materials, which is an important aspect to study the mechanism of ultrasonic vibration–assisted turning, go hand in hand. This article first introduces the types and changes of chip, meanwhile the chip formation mechanism of ultrasonic vibration–assisted turning is studied and analyzed, and the turning experiments of 304 austenitic stainless steel with and without ultrasonic vibration are carried out. The difference of chip morphology between ultrasonic vibration–assisted turning and conventional turning is contrasted and analyzed from the macroscopic and microscopic point of view. The influence of process parameters on chip shape and the impact of chip shape on machining effect are also analyzed. Results indicate that when process parameters (vibration frequency, ultrasonic amplitude, and cutting parameters) are suitably selected, ultrasonic vibration–assisted turning can gain access to better chip shape and chip breaking effect than conventional turning. By contrast with conventional turning, phenomenon of serrated burr on the chip edge and the surface defects of chip in ultrasonic vibration–assisted turning have improved significantly. Moreover, it is found that superior chip morphology in ultrasonic vibration–assisted turning can be acquired under the circumstance of comparatively small cutting parameters (cutting speed, depth of cut, and feed rate); at the same time, preferable chips can also obtain ranking machining effect.


2019 ◽  
Vol 28 ◽  
pp. 01012
Author(s):  
Mariusz Barański ◽  
Krystian Glapa

In this paper, 3D steady-state thermal field modeling in electromagnetic gripping system using Comsol Multiphisics was presented. The electromagnetic gripping system, which is a component of the mechanical leg of a walking robot was designed by the authors. An algorithm to design of the electromagnetic gripping was developed. During calculations, the influence of the value of the current on the thermal field distribution in steady-state was carried out. Selected results of simulations as well as the analysis of these results were presented.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1089-1092
Author(s):  
Qing Dong Qin

The electricity consuming of aluminium electrolysis cell is affected by the voltage drop of anode steel claws during the aluminium electrolysis course. The resistivity of anode steel claws is affected by the temperature. In the present study, the thermal field distribution of anode steel claws was studied by finite element analysis. The results show that the thermal energy of anode steel claws come from anode carbon blocks and environment. The temperature of steel claws less than 1/3 height is affected by anode carbon blocks, and the other part is affected by surrounding temperature. According the results, the principle of the new anode steel claw design is proposed.


2019 ◽  
Vol 103 (5-8) ◽  
pp. 3013-3024
Author(s):  
Chenhui An ◽  
Ke Feng ◽  
Wei Wang ◽  
Qiao Xu ◽  
Xiangyang Lei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document