Velocity vector measurements by hydroxyl tagging velocimetry based on crossed tagging and displaying

2019 ◽  
Vol 27 (7) ◽  
pp. 1417-1425
Author(s):  
叶景峰 YE Jing-feng ◽  
李国华 LI Guo-hua ◽  
邵 珺 SHAO Jun ◽  
胡志云 HU Zhi-yun ◽  
陶 波 TAO Bo ◽  
...  
1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1999 ◽  
Vol 45 (151) ◽  
pp. 533-538 ◽  
Author(s):  
Niels Reeh ◽  
Søren Nørvang Madsen ◽  
Johan Jakob Mohr

AbstractUntil now, an assumption of surface-parallel glacier flow has been used to express the vertical velocity component in terms of the horizontal velocity vector, permitting all three velocity components to be determined from synthetic aperture radar interferometry. We discuss this assumption, which neglects the influence of the local mass balance and a possible contribution to the vertical velocity arising if the glacier is not in steady state. We find that the mass-balance contribution to the vertical surface velocity is not always negligible as compared to the surface-slope contribution. Moreover, the vertical velocity contribution arising if the ice sheet is not in steady state can be significant. We apply the principle of mass conservation to derive an equation relating the vertical surface velocity to the horizontal velocity vector. This equation, valid for both steady-state and non-steady-state conditions, depends on the ice-thickness distribution. Replacing the surface-parallel-flow assumption with a correct relationship between the surface velocity components requires knowledge of additional quantities such as surface mass balance or ice thickness.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter defines the mathematical spaces to which the geometrical quantities discussed in the previous chapter—scalars, vectors, and the metric—belong. Its goal is to go from the concept of a vector as an object whose components transform as Tⁱ → 𝓡ⱼ ⁱTj under a change of frame to the ‘intrinsic’ concept of a vector, T. These concepts are also generalized to ‘tensors’. The chapter also briefly remarks on how to deal with non-Cartesian coordinates. The velocity vector v is defined as a ‘free’ vector belonging to the vector space ε‎3 which subtends ε‎3. As such, it is not bound to the point P at which it is evaluated. It is, however, possible to attach it to that point and to interpret it as the tangent to the trajectory at P.


2012 ◽  
Vol 12 (05) ◽  
pp. 1240029 ◽  
Author(s):  
THU-THAO LE ◽  
RU-SAN TAN ◽  
FEIQIONG HUANG ◽  
LIANG ZHONG ◽  
SRIDHAR IDAPALAPATI ◽  
...  

Heart failure (HF), one of the most common diseases in the world, causes left ventricular dysfunction (LV) and high mortality. HF patients are stratified into two groups based on their LV ejection fraction (EF) — HF with normal EF (HFNEF) and with reduced EF (HFREF). EF is a commonly used measure of LV contractile performance. Despite preserved EF, a complex mixture of systolic and diastolic dysfunction and variable degrees of LV remodelling underlying HFNEF poses challenges to diagnose and provide pharmacological treatment for HFNEF. In recent years, the velocity flow mapping (VFM) technique has been developed to generate flow velocity vector fields by post-processing color Doppler echocardiographic (echo) images. We aim to obtain the intra-LV blood flow patterns for patients with HFNEF, HFREF, and normal subjects, in order to characterize the LV performance outcomes of normal subjects and HF patients. Two subjects from each group of HFNEF, HFREF, and normal underwent echo scans. Velocity vector distributions throughout the cardiac cycle were then analysed using the VFM technique. In each subject, the outflow rate during systole, inflow rate during diastole, as well as wall stress-based pressure-normalized contractility index, dσ*/dt max , were computed and compared among the groups. This study demonstrated the use of VFM to visualize LV blood flow patterns in HF patients and normal subjects. Different patterns of flow distributions were observed in these subjects. In HFREF patients, dσ*/dt max , the peak outflow rate and peak inflow rate during early filling were markedly reduced. In HFNEF patients, peak outflow rates were increased compared to those of normal subjects.


Sign in / Sign up

Export Citation Format

Share Document