Performance and Emission Evaluation of Marine Diesel Engine Using Two–Phase Emulsion as Fuel

2020 ◽  
Vol 14 (5) ◽  
2016 ◽  
Vol 9 (3) ◽  
pp. 186-198 ◽  
Author(s):  
Fei Yan ◽  
Yuchen Du ◽  
Lihui Wang ◽  
Wenxian Tang ◽  
Jian Zhang ◽  
...  

Numerical simulation of the cavitation and spray in a marine diesel engine is performed to investigate the effects of injection pressure on the cavitation flow and spray characteristics in the marine diesel engine, which in turn influence atomization and combustion in the cylinder. A two-phase flow model combined with single bubble dynamics and a droplet break-up model are used to simulate cavitation and spray, respectively, and the results are compared to the experimental data. With increasing injection pressure, the pressure fluctuations inside the nozzle become more intense. The spray penetration is proportional to time at the beginning of injection. Higher injection pressure increases the spray angle. In addition, massive structures on spray edge can return to the spray body, whereas the massive structures on the spray head remain unchanged throughout its lifetime. Each additional 20 MPa of injection pressure reduces the Sauter mean diameter by approximately 9%.


Author(s):  
G.V. GOGOLEV

The analysis of using cooling devices possibility on the basis of two–phase thermal siphons in «Cummins» marine diesel engine speed control systems is carried out.


Sign in / Sign up

Export Citation Format

Share Document