scholarly journals Multicolor Time-lapse Imaging of Transgenic Zebrafish: Visualizing Retinal Stem Cells Activated by Targeted Neuronal Cell Ablation

Author(s):  
Junko Ariga ◽  
Steven L. Walker ◽  
Jeff S. Mumm
Methods ◽  
2018 ◽  
Vol 133 ◽  
pp. 81-90 ◽  
Author(s):  
Katja M. Piltti ◽  
Brian J. Cummings ◽  
Krystal Carta ◽  
Ayla Manughian-Peter ◽  
Colleen L. Worne ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chiara Beretta ◽  
Elisabeth Nikitidou ◽  
Linn Streubel-Gallasch ◽  
Martin Ingelsson ◽  
Dag Sehlin ◽  
...  

AbstractAlzheimer’s disease (AD) is characterized by a substantial loss of neurons and synapses throughout the brain. The exact mechanism behind the neurodegeneration is still unclear, but recent data suggests that spreading of amyloid-β (Aβ) pathology via extracellular vesicles (EVs) may contribute to disease progression. We have previously shown that an incomplete degradation of Aβ42 protofibrils by astrocytes results in the release of EVs containing neurotoxic Aβ. Here, we describe the cellular mechanisms behind EV-associated neurotoxicity in detail. EVs were isolated from untreated and Aβ42 protofibril exposed neuroglial co-cultures, consisting mainly of astrocytes. The EVs were added to cortical neurons for 2 or 4 days and the neurodegenerative processes were followed with immunocytochemistry, time-lapse imaging and transmission electron microscopy (TEM). Addition of EVs from Aβ42 protofibril exposed co-cultures resulted in synaptic loss, severe mitochondrial impairment and apoptosis. TEM analysis demonstrated that the EVs induced axonal swelling and vacuolization of the neuronal cell bodies. Interestingly, EV exposed neurons also displayed pathological lamellar bodies of cholesterol deposits in lysosomal compartments. Taken together, our data show that the secretion of EVs from Aβ exposed cells induces neuronal dysfunction in several ways, indicating a central role for EVs in the progression of Aβ-induced pathology.


2010 ◽  
Vol 4 (1) ◽  
pp. 190-198 ◽  
Author(s):  
Christina Ern ◽  
Vera Krump-Konvalinkova ◽  
Denitsa Docheva ◽  
Stefanie Schindler ◽  
Oliver Rossmann ◽  
...  

Current strategies for tissue engineering of bone rely on the implantation of scaffolds, colonized with human mesenchymal stem cells (hMSC), into a recipient. A major limitation is the lack of blood vessels. One approach to enhance the scaffold vascularisation is to supply the scaffolds with endothelial cells (EC). The main goal of this study was to establish a coculture system of hMSC and EC for the purposes of bone tissue engineering. Therefore, the cell behaviour, proliferation and differentiation capacity in various cell culture media as well as cell interactions in the cocultures were evaluated. The differentiation capacity of hMSC along osteogenic, chondrogenic, and adipogenic lineage was impaired in EC medium while in a mixed EC and hMSC media, hMSC maintained osteogenic differentiation. In order to identify and trace EC in the cocultures, EC were transduced with eGFP. Using time-lapse imaging, we observed that hMSC and EC actively migrated towards cells of their own type and formed separate clusters in long term cocultures. The scarcity of hMSC and EC contacts in the cocultures suggest the influence of growth factor-mediated cell interactions and points to the necessity of further optimization of the coculture conditions.


2020 ◽  
Author(s):  
Min Kyoung Kam ◽  
Dong Gil Lee ◽  
Bokyung Kim ◽  
Jae-Won Huh ◽  
H.J. Lee ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disease associated with the accumulation of amyloid-beta oligomers (AβOs). Recent studies have demonstrated that mitochondria-specific autophagy (mitophagy) contributes to mitochondrial quality control by selectively eliminating the dysfunctional mitochondria. Mitochondria motility, which is regulated by Miro1, is also associated with neuronal cell functions. However, the role played by Miro1 in the mitophagy mechanism, especially relative to AβOs and neurodegenerative disorders, remains unknown. In this study, AβOs induced mitochondrial dysfunction, enhanced Parkin-mediated mitophagy, and reduced mitochondrial quantities in hippocampal neuronal cells (HT-22 cells). We demonstrated that AβO-induced mitochondrial fragmentation could be rescued to the elongated mitochondrial form and that mitophagy could be mitigated by the stable overexpression of Miro1 or by pretreatment with N-acetylcysteine (NAC)-a reactive oxygen species (ROS) scavenger-as assessed by immunocytochemistry. Moreover, using time-lapse imaging, under live cell-conditions, we verified that mitochondrial motility was rescued by the Miro1 overexpression. Finally, in HT-22 cells from amyloid precursor protein (APP)/presenilin 1 (PS1)/Tau triple-transgenic mice, we noted that the co-localization between mitochondria and LC3B puncta increased. Taken together, these results indicated that upregulated ROS, induced by AβO, increased the degree of mitophagy and decreased the Miro1 expression levels. In contrast, the Miro1 overexpression ameliorated AβO-mediated mitophagy and increased the mitochondrial motility. In AD model mice, AβOs induced mitophagy in the hippocampus. Thus, our results would improve our understanding of the role of mitophagy in AD toward facilitating the development of novel therapeutic agents for the treatment of AβO-mediated diseases.


2019 ◽  
Vol 13 (5) ◽  
pp. 054102
Author(s):  
Adam F. Laing ◽  
Venkat Tirumala ◽  
Evan Hegarty ◽  
Sudip Mondal ◽  
Peisen Zhao ◽  
...  

2017 ◽  
Vol 216 (12) ◽  
pp. 3981-3990 ◽  
Author(s):  
Kenichiro Taniguchi ◽  
Yue Shao ◽  
Ryan F. Townshend ◽  
Chari L. Cortez ◽  
Clair E. Harris ◽  
...  

Human pluripotent stem cells (hPSCs) self-organize into apicobasally polarized cysts, reminiscent of the lumenal epiblast stage, providing a model to explore key morphogenic processes in early human embryos. Here, we show that apical polarization begins on the interior of single hPSCs through the dynamic formation of a highly organized perinuclear apicosome structure. The membrane surrounding the apicosome is enriched in apical markers and displays microvilli and a primary cilium; its lumenal space is rich in Ca2+. Time-lapse imaging of isolated hPSCs reveals that the apicosome forms de novo in interphase, retains its structure during mitosis, is asymmetrically inherited after mitosis, and relocates to the recently formed cytokinetic plane, where it establishes a fully polarized lumen. In a multicellular aggregate of hPSCs, intracellular apicosomes from multiple cells are trafficked to generate a common lumenal cavity. Thus, the apicosome is a unique preassembled apical structure that can be rapidly used in single or clustered hPSCs to initiate self-organized apical polarization and lumenogenesis.


Blood ◽  
2014 ◽  
Vol 124 (1) ◽  
pp. 79-83 ◽  
Author(s):  
Narges M. Rashidi ◽  
Mark K. Scott ◽  
Nico Scherf ◽  
Axel Krinner ◽  
Jens S. Kalchschmidt ◽  
...  

Key Points Normally, engrafting HSCs reside and oscillate within confined bone marrow niches. HSCs harvested from mice bearing acute infection are migratory and interact with larger niches.


Acta Naturae ◽  
2016 ◽  
Vol 8 (3) ◽  
pp. 88-96
Author(s):  
Yu. K. Doronin ◽  
I. V. Senechkin ◽  
L. V. Hilkevich ◽  
M. A. Kurcer

In order to estimate the diversity of embryo cleavage relatives to embryo progress (blastocyst formation), time-lapse imaging data of preimplantation human embryo development were used. This retrospective study is focused on the topographic features and time parameters of the cleavages, with particular emphasis on the lengths of cleavage cycles and the genealogy of blastomeres in 2- to 8-cell human embryos. We have found that all 4-cell human embryos have four developmental variants that are based on the sequence of appearance and orientation of cleavage planes during embryo cleavage from 2 to 4 blastomeres. Each variant of cleavage shows a strong correlation with further developmental dynamics of the embryos (different cleavage cycle characteristics as well as lengths of blastomere cycles). An analysis of the sequence of human blastomere divisions allowed us to postulate that the effects of zygotic determinants are eliminated as a result of cleavage, and that, thereafter, blastomeres acquire the ability of own syntheses, regulation, polarization, formation of functional contacts, and, finally, of specific differentiation. This data on the early development of human embryos obtained using noninvasive methods complements and extend our understanding of the embryogenesis of eutherian mammals and may be applied in the practice of reproductive technologies.


Sign in / Sign up

Export Citation Format

Share Document