scholarly journals High Throughput MicroRNA Profiling: Optimized Multiplex qRT-PCR at Nanoliter Scale on the Fluidigm Dynamic ArrayTM IFCs

Author(s):  
Felix Moltzahn ◽  
Nathan Hunkapiller ◽  
Alain A. Mir ◽  
Tal Imbar ◽  
Robert Blelloch
2020 ◽  
pp. 247255522095659
Author(s):  
Jing Chen ◽  
Alan Futran ◽  
Austin Crithary ◽  
Sha Li ◽  
Alex Wolicki ◽  
...  

We previously developed a panel of one-step real-time quantitative reverse transcription PCR (one-step qRT-PCR; hereafter referred to as qRT-PCR) assays to assess compound efficacy. However, these high-cost, conventional qRT-PCR manual assays are not amenable to high-throughput screen (HTS) analysis in a time-sensitive and complex drug discovery process. Here, we report the establishment of an automated gene expression platform using in-house lysis conditions that allows the study of various cell lines, including primary T cells. This process innovation provides the opportunity to perform genotypic profiling in both immunology and oncology therapeutic areas with quantitative studies as part of routine drug discovery program support. This newly instituted platform also enables a panel screening strategy to efficiently connect HTS, lead identification, and lead optimization in parallel.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3097-3097
Author(s):  
Martin F. Kaiser ◽  
Dil Begum ◽  
Paula Proszek ◽  
Nasrin Dahir ◽  
David Gonzalez de Castro ◽  
...  

Abstract Introduction Obtaining reliable information about the molecular subtype of myeloma is and will become ever more important in a number of clinical settings, such as alternative treatment strategies for high risk or ultra high risk disease (Boyd KD et al., Leukemia 2011), or patient selection for small molecule inhibitors, that are currently under development, targeting myeloma subtype specific proteins (e.g. MMSET or MAF). We report here our experience with a novel, highly applicable and high throughput diagnostic approach in a large sample set of 1016 myeloma presentation cases, using a combination of qRT-PCR and Multiplex Ligation-dependent Probe Amplification (MLPA) for molecular patient characterization of Ig loci translocations and well-defined copy number abnormalities. Material and Methods Recurrent translocations were assessed for 1016 presentation NCRI Myeloma XI trial cases and 41 matched relapse samples, using a previously published and interphase fluorescence in situ hybridization (iFISH)-validated in house qRT-PCR assay on purified bone marrow plasma cell material. The assay measures expression of translocation partner genes and their downstream effectors (e.g. CCND1, MMSET, FGFR3, MAF, MAFB, CCND2) with subsequent interpretation and categorization of results based on the translocation/cyclin D (TC) classification. This allows prediction of presence of the recurrent translocations with high sensitivity and specificity (Kaiser MF et al., Leukemia 2013) and evaluation of overexpression of potential drug targets independent of translocations (e.g. MAF). For selected cases, the myeloma specific SALSA MLPA assay (MRC-Holland) was performed, containing 46 probes that inform about prognostically relevant copy number alterations, such as del(1p), gain(1q), or del(17p). High correlation between MLPA and FISH results for clinically relevant copy number aberrations has been previously reported (Alpar D et al., Genes Chrom Canc 2013). Results The TC classification based translocation qRT-PCR assay worked reliably even for poor quality input RNA, providing results for >96% of analyzed samples. Predicted translocation frequencies among the 1016 evaluable cases were comparable to previously reported results [t(11;14): 16.6%; t(4;14): 12.6%, of which 21.1% lacked FGFR3 expression; t(14;16): 2.6%; t(14;20): 0.5%; t(6;14): 0.7%]. Relapse samples showed consistent results with matched presentation samples, with one t(4;14) case losing initial high FGFR3 expression at relapse. Correlation with clinical data will be available for presentation at the meeting. Measurement and analysis of the samples was performed by a single lab technician in a short time, demonstrating the high throughput capability of the method. This makes rapid analysis of very large sample collections possible, revealing novel findings. When the assayed group was split by median age, the younger group (22-66 years) contained relatively more t(4;14) [15.7% vs. 9.4%; p=0.003] cases than the older group (67-88 years), consistent with recent reports on iFISH data (Avet-Loiseau H, 2013). We also found a lower frequency of t(11;14) [13.6% vs. 19%;p=0.022] in the younger vs. the older group, which has not been reported. MLPA results were generated for a subset of 30 samples for which iFISH and copy number array data were available. The previously reported high level of correlation with iFISH results (Alpar D et al., Genes Chrom Canc 2013) was confirmed and extended for copy number array data, with >85% sensitivity and >95% specificity for del(1p), gain(1q), del(13p) and del(17p). MLPA assessments will be extended in the coming months to include a large group of Myeloma XI cases, and results and their associations with qRT-PCR results and clinical features will be presented at the meeting. Conclusion Precision medicine approaches in myeloma require fast, robust and practicable molecular diagnostic tools. The current diagnostic standard iFISH doesn’t fulfill any of these criteria. Other approaches such as microarray analyses have never found acceptance outside of highly specialized centers due to practicability issues. With the approach presented here, clinically relevant molecular features can be assessed within 48 hours with standard molecular laboratory equipment. This approach is a suitable candidate for a novel standard for routine clinical molecular analysis of multiple myeloma. Disclosures: Savola: MRC-Holland: Employment.


Parasite ◽  
2016 ◽  
Vol 23 ◽  
pp. 23 ◽  
Author(s):  
Song Jiang ◽  
Xin Li ◽  
Xuhai Wang ◽  
Qian Ban ◽  
Wenqiao Hui ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0132621 ◽  
Author(s):  
Wenbin Li ◽  
Pengpeng Wang ◽  
Yongguang Li ◽  
Kexin Zhang ◽  
Fuquan Ding ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 172-172
Author(s):  
Martin F Kaiser ◽  
Eileen M Boyle ◽  
Brian A Walker ◽  
Charlotte Pawlyn ◽  
Dil Begum ◽  
...  

Abstract Introduction Co-segregation of two or more adverse structural genetic aberrations in myeloma is associated with a particularly bad outcome and defines a molecular high risk subgroup of patients that is in urgent need of innovative treatment approaches (Boyd, Leukemia 2012). Interphase in situ fluorescence hybridization(iFISH) is the current clinical standard for detecting structural genetic aberrations in myeloma. However, iFISH is labor-intensive, slow and dependent on investigator expertise, which makes standardization difficult. There is an urgent need to develop a standardized and easily accessible all-molecular diagnostic test to enable the design of risk-stratified trials and, finally, risk-adapted precision medicine treatments for high risk patients. Material and Methods Bone marrow material from 1596 patients was received by a central laboratory for patients enrolled in the NCRI Myeloma XI trial (NCT01554852) at diagnosis from over 80 centers throughout the UK. Myeloma cells were purified to a purity of >98% (median across samples) using an AutoMACS (Miltenyi Biotech) system and DNA and RNA were extracted using AllPrep columns (QIAGEN). Recurrent translocations were predicted by gene expression using a sensitive and specific TC-classification based multiplex qRT-PCR assay on a standard TaqMan (Life Technologies) real-time cycler (Kaiser et al., Leukemia 2013). Myeloma specific copy number alterations were assayed using the sensitive and specific multiplex ligation-dependent probe amplification assay (MLPA P425; MRC Holland; Alpar et al, Gen Chrom Cancer 2013) on a standard thermocycler and a standard ABI 3730 capillary electrophoresis Genetic Analyzer. Analysis of qRT-PCR and MLPA results was performed on a desktop computers using standard software without need for bioinformatics expertise or infrastructure. Results Translocation status was successfully analyzed for 1201 cases and copy number aberrations were successfully analyzed for 1232 cases. Matched translocation and copy number aberration data was available for 1044 cases. Genetic lesions associated with an adverse prognosis were detected with the following frequencies among the 1044 cases: t(4;14): 13%; t(14;16): 4%; t(14;20): 1%; del(1p32): 9%; gain(1q): 27%; amp(1q): 8%; del(17p): 9%. Non-high risk recurrent IGH translocations as well as copy number aberrations were assayed through both tests as well. Co-segregation analysis of all detected abnormalities using Fisher’s exact test, corrected for multiple testing, revealed co-occurrence more than expected by chance of the following lesions: t(4;14) and gain(1q): q=6.2x10-4; t(4;14) and amp(1q): q=2.1x10-7; del(1p32) and gain(1q): 1.1x10-3. Statistically significant co-occurrence was also observed for del(12p) and del(17p): q=2.1x10-5 as well as del(12p) and t(4;14): q=1.8x10-5. Survival data at the timepoint of analysis was available for 450 patients with a median follow-up of 25 months. Patients were classified as previously described (Boyd et al, Leukemia 2013) into molecular risk groups with standard risk defined by absence of adverse genetic lesions (n=224), intermediate risk with presence of one adverse genetic lesion (n=161) and high risk with presence of two adverse lesions (n=65). On Cox analysis, there was a significant difference in terms of PFS between these groups with a median PFS of 31.3 months (95% CI 28.5-35.2), 25.8 months (CI 22.1-27.6) and 16.2 months (CI 10.6-23.7) for groups with none, one, two or more genetic lesions, respectively. The 2-year OS was also significantly different between the groups with 84% (CI 79-89%) in standard risk, 78% (CI 71-85%) in intermediate risk and 65% (CI 53-78%) in high risk patients. Conclusion This all-molecular diagnostic approach for recurrent structural aberrations in myeloma offers a fast, robust and high throughput alternative to iFISH that can be run in any molecular diagnostic laboratory on standard equipment. The methods described here enable standardized and specific identification of a high risk subgroup of patients without the need for a bioinformatics infrastructure or expertise. The clinical applicability of this method makes it an ideal candidate method for prospective molecular risk-stratified clinical trials. Disclosures Walker: Onyx Pharmaceuticals: Consultancy, Honoraria. Savola:MRC-Holland: Employment.


2013 ◽  
Vol 16 (2) ◽  
pp. 228-240 ◽  
Author(s):  
Evelina Miele ◽  
Francesca Romana Buttarelli ◽  
Antonella Arcella ◽  
Federica Begalli ◽  
Neha Garg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document