Assessment of the Metabolic Profile of Primary Leukemia Cells

Author(s):  
Katerina Hlozková ◽  
Julia Starková
PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e80732 ◽  
Author(s):  
Fatih M. Uckun ◽  
Hong Ma ◽  
Rita Ishkhanian ◽  
Martha Arellano ◽  
Anoush Shahidzadeh ◽  
...  

2021 ◽  
Author(s):  
Kathrin Bernt

This protocol is used to thaw primary cells. Key points are the addition of DNAse, which helps to preserve viability.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 758-758
Author(s):  
◽  
Fatima Al-Shahrour ◽  
Kimberly A. Hartwell ◽  
Lisa P Chu ◽  
Jaras Marcus ◽  
...  

Abstract Abstract 758 Primary leukemia stem cells (LSCs) reside in an in vivo microenvironment that supports the growth and survival of malignant cells. Despite the increasing understanding of the importance of niche interactions and primary cell biology in leukemia, many studies continue to focus on cell autonomous processes in artificial model systems. The majority of strategies to-date that attempt to define therapeutic targets in leukemia have relied on screening cell lines in culture; new strategies should incorporate the use of primary disease within a physiologic niche. Using a primary murine MLL-AF9 acute myeloid leukemia (AML) model highly enriched for LSCs, we performed an in vivo short hairpin RNA (shRNA) screen to identify novel genes that are essential for leukemia growth and survival. LSCs infected with pools of shRNA lentivirus were transplanted and grown in recipient mice for 2 weeks, after which bone marrow and spleen cells were isolated. Massively parallel sequencing of infected LSCs isolated before and after transplant was used to quantify the changes in shRNA representation over time. Our in vivo screens were highly sensitive, robust, and reproducible and identified a number of positive controls including genes required for MLL-AF9 transformation (Ctnnb1, Mef2c, Ccna1), genes universally required for cell survival (Ube2j2, Utp18), and genes required in other AML models (Myb, Pbx1, Hmgb3). In our primary and validation screens, multiple shRNAs targeting Integrin Beta 3 (Itgb3) were consistently depleted by more than 20-fold over two weeks in vivo. Follow up studies using RNA interference (RNAi) and Itgb3−/− mice identified Itgb3 as essential for murine leukemia cells growth and transformation in vivo, and loss of Itgb3 conferred a statistically significant survival advantage to recipient mice. Importantly, neither Itgb3 knockdown or genetic loss impaired normal hematopoietic stem and progenitor cell (HSPC) function in 16 week multilineage reconstitution assays. We further identified Itgav as the heterodimeric partner of Itgb3 in our model, and found that knockdown of Itgav inhibited leukemia cell growth in vivo. Consistent the therapeutic aims or our study, flow cytometry on primary human AML samples revealed ITGAV/ITGB3 heterodimer expression. To functionally assess the importance of gene expression in a human system, we performed another RNAi screen on M9 leukemia cells, primary human cord blood CD34+ cells transduced with MLL-ENL that are capable of growing in vitro or in a xenotransplant model in vivo. We found that ITGB3 loss inhibited M9 cell growth in vivo, but not in vitro, consistent with the importance of ITGB3 in a physiologic microenvironment. We explored the signaling pathways downstream of Itgb3 using an additional in vivo, unbiased shRNA screen and identified Syk as a critical mediator of Itgb3 activity in leukemia. Syk knockdown by RNAi inhibited leukemia cell growth in vivo; downregulation of Itgb3 expression resulted in decreased levels of Syk phosphorylation; and expression of an activated form of Syk, TEL-SYK, rescued the effects of Itgb3 knockdown on leukemia cell growth in vivo. To understand cellular processes controlled by Itgb3, we performed gene expression studies and found that, in leukemia cells, Itgb3 knockdown induced differentiation and inhibited multiple previously published LSC transcriptional programs. We confirmed these results using primary leukemia cell histology and a model system of leukemia differentiation. Finally, addition of a small molecule Syk inhibitor, R406, to primary cells co-cultured with bone marrow stroma caused a dose-dependent decrease in leukemia cell growth. Our results establish the significance of the Itgb3 signaling pathway, including Syk, as a potential therapeutic target in AML, and demonstrate the utility of in vivo RNA interference screens. Disclosures: Armstrong: Epizyme: Consultancy.


2019 ◽  
Author(s):  
Katerina Hlozkova ◽  
Alena Pecinova ◽  
David Pajuelo Reguera ◽  
Marketa Simcikova ◽  
Lenka Hovorkova ◽  
...  

Abstract Background Effectiveness of L-asparaginase administration in acute lymphoblastic leukemia treatment is mirrored in overall outcome of patients. Generally, leukemia patients differ in their sensitivity to L-asparaginase; however, the mechanism underlying their inter-individual differences is still not fully understood. We have previously shown that L-asparaginase rewires the biosynthetic and bioenergetic pathways of leukemia cells to activate both anti-leukemic and pro-survival processes. Herein, we investigated the relationship between the metabolic profile of leukemia cells and their sensitivity to currently used cytostatic drugs.Methods Altogether, 19 leukemia cell lines and primary leukemia cells from 11 patients were used. Glycolytic function and mitochondrial respiration were measured using Seahorse bioanalyzer. Sensitivity to cytostatics was measured using MTS assay and/or absolute count and flow cytometry. Mitochondrial membrane potential was determined as TMRE fluorescence.Results We characterized the basal metabolic state of the cells derived from different leukemia subtypes using cell lines and primary samples and assessed their sensitivity to cytostatic drugs. We found that leukemia cells cluster into distinct groups according to their metabolic profile, which is mainly driven by their hematopoietic lineage of origin from which they derived. However, majority of lymphoid leukemia cell lines and patients with lower sensitivity to L-asparaginase clustered regardless their hematopoietic phenotype together with myeloid leukemias. Furthermore, we observed a correlation of specific metabolic parameters with sensitivity to L-asparaginase. Greater ATP-linked respiration and lower basal mitochondrial membrane potential in cells significantly correlated with higher sensitivity to L-asparaginase. No such correlation was found in other tested cytostatic drugs.Conclusions These data support the prominent role of the cell metabolism in the treatment effect of L-asparaginase. Based on these findings metabolic profile could identify leukemia patients with lower sensitivity to L-asparaginase with no specific genetic characterization.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3241-3241
Author(s):  
Noriko Satake ◽  
Astra Chang ◽  
Bridget McLaughlin ◽  
Sara Bauman ◽  
James Chan ◽  
...  

Abstract Abstract 3241 Leukemia cells are believed to arise from leukemia stem cells (LSC). It is also known that LSC are responsible for relapse in certain types of leukemia, such as acute myeloid leukemia (AML). However, the existence and role of LSC in acute lymphoblastic leukemia (ALL) is unclear. CD9 was reported to be a marker for LSC in B-ALL using cell lines (Nishida H. et al., 2009). CD9 is a tetraspanin and is believed to be involved in cell adhesion, motility, and signaling events. It is also involved in metastasis; however, the mechanisms are unknown. Since childhood ALL is a heterogeneous group of diseases and cell lines can be different from primary leukemia cells, we tested the role of CD9 as a candidate LSC marker using primary precursor B (preB) ALL cells from pediatric patients. Two methods, Raman spectroscopy and serial transplantation of sorted leukemia cells in NOD/SCID/IL2R g null (NSG) mice, were used to confirm LSC. Raman spectroscopy is a laser-based technique for the single cell analysis of intrinsic molecular vibrations reflecting cellular biochemical information. It can provide a quantitative assessment of the levels of DNA, RNA, proteins, lipids, and carbohydrates in the cell, as well as molecular-level conformational changes. Previous studies by our group showed that unique Raman fingerprints were identified in normal blood cells, ALL cells, and stem cells, including hematopoietic stem cells and embryonic stem cells. Four preB ALL samples were stained for CD9 and sorted by flow cytometry. ALL samples were obtained from patients at diagnosis or freshly harvested from NSG mice engrafted with primary leukemia samples. All samples showed heterogeneous expression of CD9. CD9 high-positive cells and negative cells were flow sorted. Raman spectra of freshly sorted CD9 high-positive and negative cells were obtained. 10 to 20 cells were analyzed in each sample. CD34 positive cells, which were isolated from normal donors, were also analyzed by Raman spectroscopy as a control. No unique Raman fingerprints were identified to separate CD9 high-positive cells from negative cells using Principal Component Analysis (PCA). Furthermore, CD9 high-positive and negative cells from three preB ALL samples were transplanted into NSG mice via intra-bone marrow injection. Equal cell numbers (5×105 to 1.5×106 cells) were used for positive and negative samples in each injection. The majority of the mice from both groups (transplanted with CD9 high-positive or negative cells) developed leukemia 3 to 4 months after injection. Leukemia phenotype was confirmed to be the same as the original leukemia. In conclusion, although CD9 was shown to be a marker for LSC in B-ALL cell lines, it does not appear to be an LSC marker in primary preB ALL. Since childhood preB ALL is a heterogeneous group of diseases, larger cohorts are necessary to confirm our findings. Raman spectroscopy may be a useful screening tool for analysis of cellular intrinsic markers. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3614-3614 ◽  
Author(s):  
Shin Young Hyun ◽  
Young Kyung Kim ◽  
Ji Eun Jang ◽  
Yundeok Kim ◽  
Yu Ri Kim ◽  
...  

Abstract Background: Na/H exchanger 1 (NHE1), an important participant in the precise regulation system of intracellular pH (pHi), is known to be involved in pathological processes such as cell transformation, maintenance and active progression of the neoplastic process. Some studies have showed that leukemic cells showed higher pHi than normal cells, and NHE1 inhibitor could induce acidification and apoptosis of the leukemic cells. In this study, we tried to elucidate the role of NHE1 in leukemic cells according to cytarabine (AraC) resistance. Materials and Methods: Two human AML cell lines, AraC sensitive (AS)-OCI-AML2 cells and AraC resistant (AR)-OCI-AML2 cells, primary leukemic cells from AML patients, and normal bone marrow mononuclear cells (BMMNC) from healthy donor were analyzed. The pH-sensitive fluorescent dye, 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) was used to measure pHi and NHE1 activity. The fluorescent ratio of the 490/440 nm was calibrated intracellularly. The expression of NHE1 was measured by qRT-PCR and western blot analysis. To inhibit the NHE1, the amiloride analogue, 5-(N,N-hexamethylene) amiloride (HMA) (10 µM, 20 µM, 30 µM) was used. Results: To confirmed AraC sensitivity, cell lines were treated with 10 µM AraC for 24 hours, and apoptosis fraction in AS-OCI-AML2 cells and AR-OCI-AML2 cells were 53.1±7.2 % and 4.0±0.8 %, respectively. The pHi of AR-OCI-AML2 cells was significantly higher than AS-OCI-AML2 cells (7.839±0.033 vs. 7.589±0.129, P=0.045) and BMMNC (7.839±0.033 vs. 7.578±0.035, P=0.083), and these differences were associated with higher NHE1 activity. Compared AS-OCI-AML2 cells, AR-OCI-AML2 cells showed significantly higher NHE1 expression by western blot analysis (Figure 1), and NHE1 mRNA levels (0.039±0.014 vs. 1.565±0.070, P<.001) by qRT-PCR. Treatment with HMA (20 µM) could induce apoptosis both on AS-OCI-AML2 cells (26.9±2.8%) and AR-OCI-AML2 cells (37.4±18.8%). Interestingly, induction of apoptosis by HMA was dose-dependent both in AS-OCI-AML2 cells and AR-OCI-AML2 cells, and higher concentration of HMA (30 µM) could induce apoptosis on most of AR-OCI-AML2 cells (68.7±20.2%). Co-treatment experiment with 10 µM AraC and 20 µM HMA in AS-OCI-AML2 cells showed additive effect on inducing apoptosis (AraC vs. HMA vs. HMA+AraC = 53.1±12.4 vs. 53.1±12.4 vs. 67.20±4.3%, Figure 2), but in AR-OCI-AML2 cells, co-treatment did not show additional or synergistic effect on inducing apoptosis (AraC vs. HMA vs. HMA+AraC = 4.0±0.1 vs. 27.1±2.2 vs. 28.1±2.0%, Figure 2). As in the cell lines, primary leukemia cells from patients with AraC resistance showing higher pHi and NHE activity than those from patients without. HMA could induce apoptosis on primary cell lines regardless AraC sensitivity. Conclusions: In this study, we first showed that NHE1 inhibition could induce apoptosis in leukemia cells regardless AraC sensitivity. Apoptotic activity was related with higher pHi and NHE activity in AraC resistant cell lines and primary leukemic cells. NHE inhibition induced apoptosis may be independent with AraC induced apoptosis. The heterogeneity in pHi and NHE activity within leukemic cells may be related to alteration in drug delivery machinery or dormant status of leukemia cells. Further experimental and clinical studies are needed to elucidate the therapeutic application of NHE1 inhibitor to AraC resistant AML. Figure 1. Western blot analysis showed higher level of expression of Na/H exchanger I in AR-AML-OCI2 cells than AS-AML-OCI2 cells. Figure 1. Western blot analysis showed higher level of expression of Na/H exchanger I in AR-AML-OCI2 cells than AS-AML-OCI2 cells. Figure 2. Percentage of apoptotic cells after treatment with 20 µM HMA and/or 10 µM AraC. Figure 2. Percentage of apoptotic cells after treatment with 20 µM HMA and/or 10 µM AraC. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3304-3304
Author(s):  
Daniel Ferguson ◽  
J. Robert McCorkle ◽  
Qian Dong ◽  
Erik Bonten ◽  
Wenjian Yang ◽  
...  

Abstract Understanding the genomic and epigenetic mechanisms of drug resistance in pediatric acute lymphoblastic leukemia (ALL) is critical for further improvements in treatment outcome. The role of transcriptomic response in conferring resistance to l-asparaginase (LASP) is poorly understood, beyond asparagine synthetase (ASNS). We defined reproducible LASP response genes in LASP resistant and sensitive ALL cell lines (n = 7) as well as primary leukemia samples from newly diagnosed patients. We identified 2219 response genes (absolute log 2FC &gt; 1.5, FDR p-value &lt;0.05) with ~16.5% being reproduced in more than one cell line. Defining target genes of the amino acid stress response related transcription factor ATF4 in ALL cell lines using ChIP-seq revealed 25% of genes that changed expression after LASP treatment were direct targets of the ATF4 transcription factor. A total of 17,117 significantly differentially bound ATF4 sites were identified (FDR p-value &lt;0.01) and 97.8% of these sites displayed an increase in ATF4 binding following LASP treatment. SLC7A11 was found to be a response gene in cell lines and patient samples as well as a direct target of ATF4. SLC7A11 was also one of only 2.4% of response genes with basal level gene expression that also correlated with LASP ex vivo resistance in primary leukemia cells from 212 newly diagnosed children enrolled on St. Jude Total Therapy 16. Experiments using chemical inhibition of SLC7A11 with sulfasalazine, gene overexpression, and partial gene knockout recapitulated LASP resistance or sensitivity in ALL cell lines. These findings show the importance of assessing changes in gene expression following treatment with an antileukemic agent for its association with drug resistance and highlights that many response genes may not differ in their basal expression in drug resistant leukemia cells. Disclosures Stock: Pfizer: Consultancy, Honoraria, Research Funding; amgen: Honoraria; agios: Honoraria; jazz: Honoraria; kura: Honoraria; kite: Honoraria; morphosys: Honoraria; servier: Honoraria; syndax: Consultancy, Honoraria; Pluristeem: Consultancy, Honoraria. Mullighan: Amgen: Current equity holder in publicly-traded company; Illumina: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Pfizer: Research Funding. Pui: Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Novartis: Other: Data Monitoring Committee. Evans: Princess Máxima Center for Pediatric Oncology, Scientific Advisory Board, Chair: Membership on an entity's Board of Directors or advisory committees; BioSkryb, Inc.: Membership on an entity's Board of Directors or advisory committees; St. Jude Children's Research Hospital, Emeritus Member (began Jan 2021): Ended employment in the past 24 months.


Sign in / Sign up

Export Citation Format

Share Document