scholarly journals 1024. Novel Non-Viral Method for Transfection of Primary Leukemia Cells and Cell Lines

2002 ◽  
Vol 5 (5) ◽  
pp. S333
Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3241-3241
Author(s):  
Noriko Satake ◽  
Astra Chang ◽  
Bridget McLaughlin ◽  
Sara Bauman ◽  
James Chan ◽  
...  

Abstract Abstract 3241 Leukemia cells are believed to arise from leukemia stem cells (LSC). It is also known that LSC are responsible for relapse in certain types of leukemia, such as acute myeloid leukemia (AML). However, the existence and role of LSC in acute lymphoblastic leukemia (ALL) is unclear. CD9 was reported to be a marker for LSC in B-ALL using cell lines (Nishida H. et al., 2009). CD9 is a tetraspanin and is believed to be involved in cell adhesion, motility, and signaling events. It is also involved in metastasis; however, the mechanisms are unknown. Since childhood ALL is a heterogeneous group of diseases and cell lines can be different from primary leukemia cells, we tested the role of CD9 as a candidate LSC marker using primary precursor B (preB) ALL cells from pediatric patients. Two methods, Raman spectroscopy and serial transplantation of sorted leukemia cells in NOD/SCID/IL2R g null (NSG) mice, were used to confirm LSC. Raman spectroscopy is a laser-based technique for the single cell analysis of intrinsic molecular vibrations reflecting cellular biochemical information. It can provide a quantitative assessment of the levels of DNA, RNA, proteins, lipids, and carbohydrates in the cell, as well as molecular-level conformational changes. Previous studies by our group showed that unique Raman fingerprints were identified in normal blood cells, ALL cells, and stem cells, including hematopoietic stem cells and embryonic stem cells. Four preB ALL samples were stained for CD9 and sorted by flow cytometry. ALL samples were obtained from patients at diagnosis or freshly harvested from NSG mice engrafted with primary leukemia samples. All samples showed heterogeneous expression of CD9. CD9 high-positive cells and negative cells were flow sorted. Raman spectra of freshly sorted CD9 high-positive and negative cells were obtained. 10 to 20 cells were analyzed in each sample. CD34 positive cells, which were isolated from normal donors, were also analyzed by Raman spectroscopy as a control. No unique Raman fingerprints were identified to separate CD9 high-positive cells from negative cells using Principal Component Analysis (PCA). Furthermore, CD9 high-positive and negative cells from three preB ALL samples were transplanted into NSG mice via intra-bone marrow injection. Equal cell numbers (5×105 to 1.5×106 cells) were used for positive and negative samples in each injection. The majority of the mice from both groups (transplanted with CD9 high-positive or negative cells) developed leukemia 3 to 4 months after injection. Leukemia phenotype was confirmed to be the same as the original leukemia. In conclusion, although CD9 was shown to be a marker for LSC in B-ALL cell lines, it does not appear to be an LSC marker in primary preB ALL. Since childhood preB ALL is a heterogeneous group of diseases, larger cohorts are necessary to confirm our findings. Raman spectroscopy may be a useful screening tool for analysis of cellular intrinsic markers. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3614-3614 ◽  
Author(s):  
Shin Young Hyun ◽  
Young Kyung Kim ◽  
Ji Eun Jang ◽  
Yundeok Kim ◽  
Yu Ri Kim ◽  
...  

Abstract Background: Na/H exchanger 1 (NHE1), an important participant in the precise regulation system of intracellular pH (pHi), is known to be involved in pathological processes such as cell transformation, maintenance and active progression of the neoplastic process. Some studies have showed that leukemic cells showed higher pHi than normal cells, and NHE1 inhibitor could induce acidification and apoptosis of the leukemic cells. In this study, we tried to elucidate the role of NHE1 in leukemic cells according to cytarabine (AraC) resistance. Materials and Methods: Two human AML cell lines, AraC sensitive (AS)-OCI-AML2 cells and AraC resistant (AR)-OCI-AML2 cells, primary leukemic cells from AML patients, and normal bone marrow mononuclear cells (BMMNC) from healthy donor were analyzed. The pH-sensitive fluorescent dye, 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) was used to measure pHi and NHE1 activity. The fluorescent ratio of the 490/440 nm was calibrated intracellularly. The expression of NHE1 was measured by qRT-PCR and western blot analysis. To inhibit the NHE1, the amiloride analogue, 5-(N,N-hexamethylene) amiloride (HMA) (10 µM, 20 µM, 30 µM) was used. Results: To confirmed AraC sensitivity, cell lines were treated with 10 µM AraC for 24 hours, and apoptosis fraction in AS-OCI-AML2 cells and AR-OCI-AML2 cells were 53.1±7.2 % and 4.0±0.8 %, respectively. The pHi of AR-OCI-AML2 cells was significantly higher than AS-OCI-AML2 cells (7.839±0.033 vs. 7.589±0.129, P=0.045) and BMMNC (7.839±0.033 vs. 7.578±0.035, P=0.083), and these differences were associated with higher NHE1 activity. Compared AS-OCI-AML2 cells, AR-OCI-AML2 cells showed significantly higher NHE1 expression by western blot analysis (Figure 1), and NHE1 mRNA levels (0.039±0.014 vs. 1.565±0.070, P<.001) by qRT-PCR. Treatment with HMA (20 µM) could induce apoptosis both on AS-OCI-AML2 cells (26.9±2.8%) and AR-OCI-AML2 cells (37.4±18.8%). Interestingly, induction of apoptosis by HMA was dose-dependent both in AS-OCI-AML2 cells and AR-OCI-AML2 cells, and higher concentration of HMA (30 µM) could induce apoptosis on most of AR-OCI-AML2 cells (68.7±20.2%). Co-treatment experiment with 10 µM AraC and 20 µM HMA in AS-OCI-AML2 cells showed additive effect on inducing apoptosis (AraC vs. HMA vs. HMA+AraC = 53.1±12.4 vs. 53.1±12.4 vs. 67.20±4.3%, Figure 2), but in AR-OCI-AML2 cells, co-treatment did not show additional or synergistic effect on inducing apoptosis (AraC vs. HMA vs. HMA+AraC = 4.0±0.1 vs. 27.1±2.2 vs. 28.1±2.0%, Figure 2). As in the cell lines, primary leukemia cells from patients with AraC resistance showing higher pHi and NHE activity than those from patients without. HMA could induce apoptosis on primary cell lines regardless AraC sensitivity. Conclusions: In this study, we first showed that NHE1 inhibition could induce apoptosis in leukemia cells regardless AraC sensitivity. Apoptotic activity was related with higher pHi and NHE activity in AraC resistant cell lines and primary leukemic cells. NHE inhibition induced apoptosis may be independent with AraC induced apoptosis. The heterogeneity in pHi and NHE activity within leukemic cells may be related to alteration in drug delivery machinery or dormant status of leukemia cells. Further experimental and clinical studies are needed to elucidate the therapeutic application of NHE1 inhibitor to AraC resistant AML. Figure 1. Western blot analysis showed higher level of expression of Na/H exchanger I in AR-AML-OCI2 cells than AS-AML-OCI2 cells. Figure 1. Western blot analysis showed higher level of expression of Na/H exchanger I in AR-AML-OCI2 cells than AS-AML-OCI2 cells. Figure 2. Percentage of apoptotic cells after treatment with 20 µM HMA and/or 10 µM AraC. Figure 2. Percentage of apoptotic cells after treatment with 20 µM HMA and/or 10 µM AraC. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3304-3304
Author(s):  
Daniel Ferguson ◽  
J. Robert McCorkle ◽  
Qian Dong ◽  
Erik Bonten ◽  
Wenjian Yang ◽  
...  

Abstract Understanding the genomic and epigenetic mechanisms of drug resistance in pediatric acute lymphoblastic leukemia (ALL) is critical for further improvements in treatment outcome. The role of transcriptomic response in conferring resistance to l-asparaginase (LASP) is poorly understood, beyond asparagine synthetase (ASNS). We defined reproducible LASP response genes in LASP resistant and sensitive ALL cell lines (n = 7) as well as primary leukemia samples from newly diagnosed patients. We identified 2219 response genes (absolute log 2FC &gt; 1.5, FDR p-value &lt;0.05) with ~16.5% being reproduced in more than one cell line. Defining target genes of the amino acid stress response related transcription factor ATF4 in ALL cell lines using ChIP-seq revealed 25% of genes that changed expression after LASP treatment were direct targets of the ATF4 transcription factor. A total of 17,117 significantly differentially bound ATF4 sites were identified (FDR p-value &lt;0.01) and 97.8% of these sites displayed an increase in ATF4 binding following LASP treatment. SLC7A11 was found to be a response gene in cell lines and patient samples as well as a direct target of ATF4. SLC7A11 was also one of only 2.4% of response genes with basal level gene expression that also correlated with LASP ex vivo resistance in primary leukemia cells from 212 newly diagnosed children enrolled on St. Jude Total Therapy 16. Experiments using chemical inhibition of SLC7A11 with sulfasalazine, gene overexpression, and partial gene knockout recapitulated LASP resistance or sensitivity in ALL cell lines. These findings show the importance of assessing changes in gene expression following treatment with an antileukemic agent for its association with drug resistance and highlights that many response genes may not differ in their basal expression in drug resistant leukemia cells. Disclosures Stock: Pfizer: Consultancy, Honoraria, Research Funding; amgen: Honoraria; agios: Honoraria; jazz: Honoraria; kura: Honoraria; kite: Honoraria; morphosys: Honoraria; servier: Honoraria; syndax: Consultancy, Honoraria; Pluristeem: Consultancy, Honoraria. Mullighan: Amgen: Current equity holder in publicly-traded company; Illumina: Membership on an entity's Board of Directors or advisory committees; AbbVie: Research Funding; Pfizer: Research Funding. Pui: Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; Novartis: Other: Data Monitoring Committee. Evans: Princess Máxima Center for Pediatric Oncology, Scientific Advisory Board, Chair: Membership on an entity's Board of Directors or advisory committees; BioSkryb, Inc.: Membership on an entity's Board of Directors or advisory committees; St. Jude Children's Research Hospital, Emeritus Member (began Jan 2021): Ended employment in the past 24 months.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2531-2531
Author(s):  
Li-Yuan Bai ◽  
Jing-Ru Weng ◽  
Chia-Yung Wu ◽  
Chang-Fang Chiu ◽  
Su-Peng Yeh ◽  
...  

Abstract Introduction Indole-3-carbinol (I3C) is a broadly targeted phytochemical shown to prevent carcinogenesis in animal studies and to suppress the proliferation of cancer cells of human breast, colon, prostate, and endometrium. Here we aim to test the anticancer effect of OSU-A9, an I3C derivative with improved potency, in acute myeloid leukemia (AML). Materials and Methods The in vitro activity of OSU-A9 was evaluated in AML cell lines (HL-60 and THP-1) and primary leukemia cells from 18 AML patients. THP-1 xenograft tumors in athymic nude mice was used for in vivo study. Results OSU-A9 mediates cytotoxicity in AML cell lines and primary leukemia cells from AML patients in a dose-responsive manner. The IC50 at 24 h for 18 patients was 1.63 μM. Normal human bone marrow cells were much less sensitive to OSU-A9 with an IC50 at 24 h greater than 8 μM. OSU-A9 causes cytotoxicity dependent on caspase activation, as evidenced by caspase-3 and PARP cleavage, and induces autophagy but not autophagic cell death. Interestingly, pretreatment of AML cell lines and primary AML cells with N-acetylcysteine or glutathione rescues them from apoptosis (and concomitant PARP cleavage) and Akt hypophosphorylation, implicating a key role of reactive oxygen species (ROS) in OSU-A9-related cytotoxicity. To investigate the anti-leukemia effect of OSU-A9 in vivo, fifteen male athymic nude mice were xenografted with THP-1 cells. Briefly, the anticancer utility of OSU-A9 is extended in vivo as it, administered intraperitoneally, suppresses the growth of THP-1 xenograft tumors in athymic nude mice without obvious toxicity. For biomarker analysis in the THP-1 xenografts, protein extracts were obtained from the tumors and immunoblotted for Akt levels. The tumors from OSU-A9 treated mice exhibited down regulation of Akt phosphorylation compared with those from placebo-controlled mice. Conclusions This study shows that ROS-mediated apoptosis contributes to the anticancer activity of OSU-A9 in AML cell lines and primary AML cells, and thus should be considered in the future assessment of its translational value in AML therapy. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1821-1821 ◽  
Author(s):  
June-Won Cheong ◽  
Ju In Eom Eom ◽  
Hye Won Lee ◽  
In-Hae Park ◽  
Yuri Kim ◽  
...  

Abstract Proteins regulating the mammalian target of rapamycin (mTOR), as well as some of the targets of the mTOR kinase, are overexpressed or mutated in cancer. Rapamycin inhibits the growth of cell lines derived from multiple tumor types in vitro, and tumor models in vivo. However, it has been suggested that substantial proportion of acute myeloid leukemia (AML) cells showed resistance to rapamycin-induced growth inhibition. Aim: We aim to investigate the effects of the farnesyltransferase inhibitor (FTI)-277 on the rapamycin-induced growth inhibition of human leukemia cells. Patients and methods: Flow cytometric evaluation and Western blot analysis for mTOR and Ras-like GTPase Rheb expression in the leukemia cell lines (HL60,NB4,THP1,KG1,U937) and primary leukemia cells obtained from AML patients were performed. We also observed the inhibition of cell growth and the changes in expression of mTOR and up- or down-streams of mTOR after mTOR inhibitor rapamycin treatment with or without FTI-277. Results: Both flow cytometric evaluation and Western blot analysis demonstrated that mTOR expression in the leukemia cell lines (HL60, NB4, THP1, KG1, U937) and primary leukemia cells obtained from AML patients were significantly higher compared to normal bone marrow mononuclear cells (p&lt;0.001). Expression of Ras-like GTPase Rheb, a mTOR upstream, was also significantly increased in the leukemia cell lines and primary AML cells compared to normal bone marrow mononuclear (p&lt;0.001 and p&lt;0.005, respectively). We observed the inhibition rate of leukemia cell growth after treatment of cells with mTOR inhibitor rapamycin (100mM) in the absence or presence of farnesyltransferase inhibitor FTI-277 (10mM). Clonogenic cell growth in the leukemia cell lines was 69.3 ± 5.3% in the rapamycin group and 78.7 ± 4.4% in the FTI-277 group compared to that of the control group. Cotreatment of THP1 and HL-60 leukemia cells with rapamycin and FTI-277 exerted synergistic decrease in the clonogenic cell growth, as well as arrest at the G2/M phase of cell cycle, in a dose-and time-dependent manner (p&lt;0.01). This was associated with marked attenuation of protein levels of Rheb, phospho-mTOR, and mTOR downstreams phospho-p70S6 kinase, phospho-4E-BP1. Interestingly decreased expression of mTOR upstreams Akt/PKB activity, Akt/PKB phosphorylation and PTEN phosphorylation was also observed in these leukemia cells after cotreatment with FTI-277 and rapamycin. These findings were also observed in the primary leukemia cells obtained from untreated patients with AML. Conclusions: Taken together, these findings indicate that farnesyltransferase inhibitor FTI-277 potentially enhance the growth-inhibitory property of rapamycin, with inducing multiple perturbations in PI3K - Akt/PKB - mTOR signaling pathway in human leukemia cells. Combined rapamycin and FTI blockade can exert powerful anti-leukemia effects and could be developed into a novel therapeutic strategy for AML.


2020 ◽  
Author(s):  
Kateřina Kuželová ◽  
Adam Obr ◽  
Pavla Röselová ◽  
Dana Grebeňová ◽  
Petra Otevřelová ◽  
...  

AbstractP21-activated kinases (PAK) regulate many processes associated with cytoskeleton dynamics, including cell adhesion, migration, and apoptosis. PAK function is frequently altered in cancer, and PAK were proposed as therapy targets both in solid tumors and in hematological malignancies. However, current knowledge about PAK function in cell adhesion is mainly based on adherent cell models. Moreover, existing functional differences among the individual PAK family members are unsufficiently characterized.We measured expression of PAK group I members in leukemia cell lines and in primary leukemia cells, both on protein and mRNA levels. In functional assays, we analyzed the effect of two PAK inhibitors with different mechanisms of action, IPA-3 and FRAX597. Changes in cell interaction with fibronectin were monitored through impedance measurement and by interference reflection microscopy. Cytotoxic effects of inhibitors were assessed by Annexin V/propidium iodide test. PAK intracellular localization was analyzed by confocal microscopy.PAK2 transcript was dominant in cell lines, whereas primary leukemia cells also expressed comparable amount of PAK1, which was detected as two transcription isoforms: PAK1-full and PAK1Δ15. PAK1Δ15 and PAK2 transcript levels correlated with surface density of integrins β1 and αVβ3. PAK1-full, but not PAK2, was present in membrane protrusions. The inhibitors had partly opposed effects: IPA-3, which prevents PAK activation, induced cell contraction in semi-adherent HEL cells only. FRAX597, which inhibits PAK kinase activity, increased cell-surface contact area in all leukemia cells. Both inhibitors reduced the stability of cell attachment and induced cell death. Although many cells accumulated high FRAX597 amounts, low doses were sufficient to kill sensitive cells. FRAX597-induced cell death was fast in the MV4-11 cell line and in primary AML cells.Although PAK group I seem to be essential for leukemia cell adhesion and survival, and might thus serve as therapy targets, many PAK functions still remain to be attributed to individual isoforms and to their functional domains.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4215-4215
Author(s):  
Patrick Jesse ◽  
Gritt Mottke ◽  
Georg Seifert ◽  
Simone Fulda ◽  
Guenter Henze ◽  
...  

Abstract Helleborus niger, also known as Christmas Rose, belongs to the family of Ranunculaceae, a family of flowering plants with about 2500 different species. In complementary medicine Helleborus niger is used as adjuvant drug in the treatment of non-metastasised and metastasised forms of bronchial cancer, abdominal tumours and prostate cancer. It is also applied in myeloproliferative diseases like Hodgkin and Non-Hodgkin lymphoma, leukaemic disorders and AIDS- related diseases like the Kaposi sarcoma. Until now, there is no clinical or preclinical data regarding the effects of Helleborus niger in vivo, ex vivo or in vitro. For this purpose, we investigated the cytotoxic effects of four different standardized aqueous Helleborus niger extracts from the companies Hiscia and Helixor on various cancer cell lines. We used one whole plant extract, one root extract, one leave extract and one containing only the blossom of Helleborus niger. After 4h of treatment with the extracts no significant LDH release was measured, thus excluding an unspecific, necrotic damage of the cell membrane. After 24h a dose dependent inhibition of proliferation up to 69% could be found and after 48h a distinction into early (45,2%) and late apoptotic (45,5%) cells was detected via Annexin/PI staining. The cell cycle analysis revealed characteristic hypodiploid DNA fragments after 72h, once more identifying apoptosis as cause of the cell death. In the Western Blot analysis a processing of Caspase-3 could be found after 36 h incubation with the extract. Apoptotic cell death was detected in the Burkitt-like lymphoma cell line BJAB, the three human acute lymphoblastic leukemia cell lines NALM-6, Sup-B-15 and REH and the melanoma cell line MEL-HO. The apoptosis induction caused by the root extract was higher than the apoptotic cell death in the other extracts. There are two major pathways of apoptosis, the extrinsic pathway via death receptors like FADD and the intrinsic pathway via the mitochondria. In BJAB cells a breakdown of the mitochondrial membrane potential and dose-dependent mitochondrial permeability transition was detected after 48h, revealing that apoptosis is executed via the mitochondrial pathway. Furthermore, we found a decreased apoptosis induction in BCL-2 overexpressing melanoma cells. The dependency of Bcl-2 expression is another sign of apoptosis via the mitochondrial pathway. In contrast, apoptosis induction by Helleborus niger seems to be independent of Smac overexpression, which could be shown in Jurkat cells. In combination with the vinca alkaloid vincristine, which is used in the treatment of ALL, a synergistic effect could be detected. The apoptosis induction was up to 16% higher in combination than in the single treatment. Finally, we evaluated the effect on primary leukemia cells ex vivo. Interestingly, we could show a significant apoptosis induction in primary leukemia cells from 2 patients with ALL or AML in childhood, which were resistant to the treatment with the anthracycline doxorubicin. For the first time, we were able to show that extracts of Helleborus niger induce apoptosis in different cancer cell lines and primary leukemia cells. Apoptosis is executed via the intrinsic pathway and is independent of Smac overexpression. Thus, we present an interesting baseline for the design of upcoming in vivo experiments or clinical trials.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3981-3981 ◽  
Author(s):  
Mariola Sadowska ◽  
Nidal Muvarak ◽  
Rena G. Lapidus ◽  
Edward A. Sausville ◽  
Rajat Bannerji ◽  
...  

Abstract Abstract 3981 Dinaciclib (SCH 727965) is a selective and potent inhibitor of CDK 1, 2, 5 and 9 (IC50 < 5 nM) that has demonstrated in vitro and in vivo anti-tumor activity against a variety of tumor cell lines and human tumor xenograft models. The concentration of dinaciclib required to achieve these effects (< 100 nM) is achieved in clinical trials, and dinaciclib was found to have a more favorable therapeutic index, in preclinical murine models, than other CDK inhibitors. We have studied the effect of dinaciclib on human acute myelogenous (AML) and acute lymphoblastic (ALL) leukemia cell lines, including HL-60, K562 and Molt-4, and primary leukemia cells. Dose response curves (0.0004-10 μM) were generated for different exposure times (2, 24 and 72 h), and data from cell proliferation assay (WST-1) were used to calculate the IC50 values. Short 2 h exposure to dinaciclib followed by 24 h culture without drug resulted in different responses between the cell lines (IC50 values of 0.13 μM, 2.17 μM and ND; and viability at 10 μM 62%, 76% and 95%, for HL-60, Molt-4, and K562, respectively). With longer exposure times (24 and 72 h), the IC50 was similar between the cell lines (IC50 24 h values of 0.017, 0.015, and 0.019 μM for HL-60, Molt-4, and K562, respectively). However, even in the presence of the highest drug concentration tested (10 μM), approximately 5–25% of cells remained metabolically active after 24 h culture, and in a colony forming assay were able to proliferate and form colonies after removal of the drug. Longer 72 h exposure to dinaciclib (0.2-10 μM) completely inhibited cell proliferation in all cell lines and prevented colony formation. Next, we examined the effect of dinaciclib (2-200 nM) on cell cycle in HL-60 and K562 cells (2, 6, 9, 24 h). While lower drug concentrations and shorter exposures resulted in a minor increase in the proportion of cells in the G2 phase, a considerable increase of cells in the sub-G1 phase was observed with prolonged exposures and higher drug concentrations, most prominently in HL-60 cells (4h 200 nM 38%; 6h 20 nM 53% or 200 nM 71%, and 24 h 20 nM 84%), which is consistent with cell viability assay data. These findings were also confirmed by Annexin V/PI staining. To characterize the molecular mechanisms behind the induction of cell cycle arrest and apoptosis by dinaciclib, we measured the changes in protein expression of Mcl-1, phosphorylation of retinoblastoma (Rb) protein, and cleavage of PARP by Western blotting. Dinaciclib treatment in a dose- and time-dependent manner (6 and 24 h; 10–500 nM) significantly decreased the expression of anti-apoptotic protein Mcl-1, Rb phosphorylation at Ser 811/817, and induced cleavage of the PARP protein in the three cell lines tested. For HL-60 cells, even 2 h exposure to dinaciclib was able to induce these effects when cells were examined 4 h after treatment; however, both Mcl-1 and p-Rb returned to baseline 24 h later, suggesting that the cells were able to recover. Using HL-60 cells, we were also able to demonstrate that a decrease in Mcl-1 correlates with the decrease in phosphorylation of the carboxy-terminal domain of RNA polymerase II, suggesting that dinaciclib successfully inhibits CDK9 which may lead to transcriptional down-regulation of Mcl-1. Dinaciclib treatment also down-regulated the expression of XIAP, Bcl-xl, and phosphorylation of Bad at Ser 112 (the pro-survival form of Bad), while Bak and Bax levels remained unaffected. The cleavage of PARP correlated with the activation of the caspase-3 and -9, suggesting the involvement of the intrinsic pathway of apoptosis. We confirmed our findings in primary leukemia cells. Dinaciclib was able to induce growth inhibition in all 7 primary AML samples (IC50 for 24 h exposure ranging from 0.008 to 0.017 μM) and apoptosis (Annexin V/PI staining). Treatment with dinaciclib also resulted in down-regulation of Mcl-1, cleavage of PARP, and dephosphorylation of Rb in all primary leukemia cells examined. In summary, dinaciclib potently inhibits the growth and induces apoptosis of human leukemia cells in vitro. Prolonged exposure times may be required for its maximum efficacy, and given its short half-life in humans (1.5 to 3.3 hours), this should be considered when designing the clinical studies for patients with acute leukemias. Disclosures: Sadowska: Merck & Co: Research Funding. Muvarak:Merck & Co: Research Funding. Lapidus:Merck & Co: Equity Ownership, Research Funding. Bannerji:Merck & Co: Employment, Equity Ownership. Gojo:Merck & Co.: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2227-2227
Author(s):  
Jing Yu ◽  
Shaowei Qiu ◽  
Qiufu Ge ◽  
Ying Wang ◽  
Hui Wei ◽  
...  

Abstract Introduction Hybrid anticancer drugs are of great therapeutic interests as they can potentially overcome the flaws of conventional chemotherapy drugs and improve their efficacy. Histone deacetylase inhibitors (HDACi) and DNA damaging agents have showed synergistic effects in recent studies. In this study, we reported a novel hybrid NL-101 that combines chemo-active groups from suberoylanilide hydroxamic acid (SAHA) and bendamustine, the typical HDACi and alkylating agent respectively.The anticancer effect of NL-101 and its possible mechanisms were investigated in human leukemia cell lines and primary leukemia cells. Methods MTT assay was performed to determine the proliferation of Kasumi-1 and NB4 cells treated with NL-101. Cell cycle distribution and apoptosis rate were detected by flow cytometry. Western-blot analysis was used to analyze the level of acetylated H3 as well as apoptotic-related proteins including γ-H2AX, PARP, caspase-3, Bax, Bcl-2 and Bcl-xL. Bone marrow mononuclear cells of AML patients were isolated by density gradient centrifugation. Wright staining and Western blot were performed to determine the inducing apoptosis effect. Results NL-101 inhibited the proliferation of leukemia cell lines Kasumi-1 and NB4 cells with similar IC50 to that of SAHA. Cell cycle analysis indicated that NL-101 induced S phase arrest. As expected, apoptotic cell death was observed in response to NL-101 treatment. After treatment with 2 µmol/L NL-101 for 48 hours, the apoptosis rate of Kasumi-1 and NB4 cells were (60.19±12.01)% and (49.43±11.61)%, respectively. Western blot analysis showed that NL-101 exposure could induce the accumulation of acetylated Histone H3 and γ-H2AX as the biomarker of DNA double-strand breaks. Anti-apoptotic protein Bcl-xL involved in mitochondrial death pathway was also decreased. Moreover, NL-101 induced apoptosis with a low micromolar IC50 in various leukemia cell lines but not in nonmalignant cell line HEK293. The efficacy of NL-101 was also tested in human primary leukemia cells and all the treated samples exhibited apoptosis confirmed by the morphological examination and expression of apoptotic markers. Conclusions The novel SAHA-bendamustine hybrid NL-101 inhibited the proliferation and induced apoptotic cell death of leukemia cell lines and primary leukemia cells. It presented the properties of both HDAC inhibition and DNA damaging. Down-regulation of Bcl-xL was also involved in the apoptosis induction. These results indicated that NL-101 might be a potential compound for the treatment of leukemia. Disclosures Wang: Bristol Myers Squibb: Consultancy; Novartis: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document