In Vivo Three-Dimensional Two-Photon Microscopy to Study Conducted Vascular Responses by Local ATP Ejection Using a Glass Micro-Pipette

Author(s):  
Changsi Cai ◽  
Stefan A. Zambach ◽  
Jonas C. Fordsmann ◽  
Micael Lønstrup ◽  
Kirsten J. Thomsen ◽  
...  
2020 ◽  
Vol 318 (6) ◽  
pp. H1379-H1386
Author(s):  
Ibolya Rutkai ◽  
Wesley R. Evans ◽  
Nikita Bess ◽  
Tomas Salter-Cid ◽  
Siniša Čikić ◽  
...  

We introduce an innovative in vivo approach to study mitochondria in the cerebral circulation in their physiological environment by demonstrating the feasibility of long-term imaging and three-dimensional reconstruction. We postulate that the appropriate combination of Cre/Lox system and two-photon microscopy will contribute to a better understanding of the role of mitochondria in not only endothelium but also the different cell types of the cerebral circulation.


2010 ◽  
Vol 31 (3) ◽  
pp. 795-806 ◽  
Author(s):  
Addason F H McCaslin ◽  
Brenda R Chen ◽  
Andrew J Radosevich ◽  
Bruno Cauli ◽  
Elizabeth M C Hillman

Astrocytes are increasingly believed to play an important role in neurovascular coupling. Recent in vivo studies have shown that intracellular calcium levels in astrocytes correlate with reactivity in adjacent diving arterioles. However, the hemodynamic response to stimulation involves a complex orchestration of vessel dilations and constrictions that spread rapidly over wide distances. In this work, we study the three-dimensional cytoarchitecture of astrocytes and their interrelations with blood vessels down through layer IV of the mouse somatosensory cortex using in vivo two-photon microscopy. Vessels and astrocytes were visualized through intravenous dextran-conjugated fluorescein and cortically applied sulforhodamine 101 (SR101), respectively. In addition to exploring astrocyte density, vascular proximity, and microvascular density, we found that sheathing of subpial vessels by astrocyte processes was continuous along all capillaries, arterioles, and veins, comprising a highly interconnected pathway through which signals could feasibly be relayed over long distances via gap junctions. An inner SR101-positive sheath noted along pial and diving arterioles was determined to be nonastrocytic, and appears to represent selective SR101 staining of arterial endothelial cells. Our findings underscore the intimate relationship between astrocytes and all cortical blood vessels, and suggest that astrocytes could influence neurovascular regulation at a range of sites, including the capillary bed and pial arterioles.


2019 ◽  
Author(s):  
Nirmal Das ◽  
Ewa Baczynska ◽  
Monika Bijata ◽  
Blazej Ruszczycki ◽  
Andre Zeug ◽  
...  

AbstractThree dimensional segmentation and analysis of dendritic spines involve two major challenges: 1) how to segment individual spines from the dendrites and 2) how to quantitatively assess the morphology of individual spines. We developed a software named 3dSpAn to address these two issues by implementing our previously published 3D multiscale opening algorithm in shared intensity space and using effective morphological features for individual dendritic spine plasticity analysis. 3dSpAn consists of four modules: Preprocessing and ROI selection, Intensity thresholding and seed selection, Multiscale segmentation and Quantitative morphological feature extraction. We show the results of segmentation and morphological analysis for different observation methods, including in vitro and ex vivo imaging with confocal microscopy, and in vivo samples, using high-resolution two-photon microscopy. The software is freely available, the source code, windows installer, the software manual and video tutorial can be obtained from: https://sites.google.com/view/3dSpAn/.


2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


2021 ◽  
Author(s):  
Simeng Gu ◽  
Wei Wang ◽  
Kuan Zhang ◽  
Rou Feng ◽  
Naling Li ◽  
...  

Abstract Different effects of astrocyte during sleep and awake have been extensively studied, especially for metabolic clearance by the glymphatic system, which works during sleep and stops working during waking states. However, how astrocytes contribute to modulation of sensory transmission during sleep and awake animals remain largely unknown. Recent advances in genetically encoded Ca2+ indicators have provided a wealth of information on astrocytic Ca2+, especially in their fine perisynaptic processes, where astrocytic Ca2+ most likely affects the synaptic function. Here we use two-photon microscopy to image astrocytic Ca2+ signaling in freely moving mice trained to run on a wheel in combination with in vivo whole-cell recordings to evaluate the role of astrocytic Ca2+ signaling in different behavior states. We found that there are two kinds of astrocytic Ca2+ signaling: a small long-lasting Ca2+ increase during sleep state and a sharp widespread but short-long-lasting Ca2+ spike when the animal was awake (fluorescence increases were 23.2 ± 14.4% for whisker stimulation at sleep state, compared with 73.3 ± 11.7% for at awake state, paired t-test, p < 0.01). The small Ca2+ transients decreased extracellular K+, hyperpolarized the neurons, and suppressed sensory transmission; while the large Ca2+ wave enhanced sensory input, contributing to reliable sensory transmission in aroused states. Locus coeruleus activation works as a switch between these two kinds of astrocytic Ca2+ elevation. Thus, we show that cortical astrocytes play an important role in processing of sensory input. These two types of events appear to have different pharmacological sources and may play a different role in facilitating the efficacy of sensory transmission.


2021 ◽  
Author(s):  
Huwei Ni ◽  
Yalun Wang ◽  
Tao Tang ◽  
Wenbin Yu ◽  
Dongyu Li ◽  
...  

2013 ◽  
Vol 34 (2) ◽  
pp. 325-331 ◽  
Author(s):  
Kazuto Masamoto ◽  
Hiroyuki Takuwa ◽  
Chie Seki ◽  
Junko Taniguchi ◽  
Yoshiaki Itoh ◽  
...  

The present study aimed to determine the spatiotemporal dynamics of microvascular and astrocytic adaptation during hypoxia-induced cerebral angiogenesis. Adult C57BL/6J and Tie2-green fluorescent protein (GFP) mice with vascular endothelial cells expressing GFP were exposed to normobaric hypoxia for 3 weeks, whereas the three-dimensional microvessels and astrocytes were imaged repeatedly using two-photon microscopy. After 7 to14 days of hypoxia, a vessel sprout appeared from the capillaries with a bump-like head shape (mean diameter 14  μm), and stagnant blood cells were seen inside the sprout. However, no detectable changes in the astrocyte morphology were observed for this early phase of the hypoxia adaptation. More than 50% of the sprouts emerged from capillaries 60  μm away from the center penetrating arteries, which indicates that the capillary distant from the penetrating arteries is a favored site for sprouting. After 14 to 21 days of hypoxia, the sprouting vessels created a new connection with an existing capillary. In this phase, the shape of the new vessel and its blood flow were normalized, and the outside of the vessels were wrapped with numerous processes from the neighboring astrocytes. The findings indicate that hypoxia-induced cerebral angiogenesis provokes the adaptation of neighboring astrocytes, which may stabilize the blood–brain barrier in immature vessels.


2006 ◽  
Author(s):  
Matthew Bouchard ◽  
Svetlana Ruvinskya ◽  
David A. Boas ◽  
Elizabeth M. C. Hillman

Sign in / Sign up

Export Citation Format

Share Document