scholarly journals Optimization of Impact Energy of Copper-Polylactic Acid (Cu-PLA) Composite Using Response Surface Methodology for FDM 3D Printing

Author(s):  
Arvind Kottasamy ◽  
Mahendran Samykano ◽  
Kumaran Kadirgama ◽  
Devarajan Ramasamy ◽  
Md Mustafizur Rahman ◽  
...  

This study attempts to provide a statistical evaluation of the effect of Cu wt.% and infill pattern on the FDM-based 3D printed parts' impact properties. The developed model is based on the acquired experimental data accompanied by response surface methodology (RSM) analysis. The confidence level for RSM is set to 95% (? = 0.05), where P-value lower than 0.05 shows a significant effect by the parameter. Besides determining significant parameters, this analysis also provides modeling of impact properties and optimizes the desired mechanical performance parameter. ANOVA analysis includes data of standard deviation (S), coefficient of determination (R2), adjusted and predicted (R2). Infill pattern and Cu wt.% show a significant effect on both factors, including energy absorbed and impact strength. The model created for the energy absorbed and impact strength has an error of 7.23 % and 6.60 %. The maximum energy absorbed and impact strength obtained through optimization is 2.5180 J and 35.3657 kJ/m2, respectively, through the combination of two main factors, including Concentric infill pattern with 25 wt.% Cu. The mathematical models of the impact properties were also developed using RSM, focusing on varying copper composition and infill patterns, which can be used to predict desired impact properties.

2021 ◽  
Author(s):  
M.A. Olivares-Ramírez ◽  
Leticia López-Zamora ◽  
M.J. Peña-Juárez ◽  
E.J. Gutiérrez-Castañeda ◽  
J.A. Gonzalez-Calderon

Abstract The present work shows the implementation of the Response Surface Methodology (RSM), fed by an experimental Central Composite Design (CCD) to find the conditions that allow maximizing the inhibition of the microorganism Staphylococcus aureus with nanoparticles of TiO2 silanized with 3-Aminopropyltriethoxysilane (APTES) and doped with Ag. In addition, Poly(lactic) acid composites were prepared with these Ag/TiO2 nanoparticles with the aim to confer their antimicrobial effect. The independent variables considered were pH, AgNO3/TiO2 ratio (% w/w), and TiO2 nanoparticles concentration (g/250 mL), and as the variable of response, the length of the diameter of the halo or zone of inhibition presented by the microorganism (mm). Statistical analysis found that maximization of S. aureus inhibition occurs at intermediate levels with a value of 10 for pH and 5 g of TiO2 solids, while for the concentration of AgNO3 high levels are required, greater than 10% w/w. Likewise, the statistical significance was determined using the Student's t-test and the p-value; it was found that the significant effect corresponds to the concentration of AgNO3, so a second experimental CCD design equirradial with two factors was considered, estimating AgNO3 concentration and TiO2 amount, the pH at constant 10 value. The second experimental design indicated that maximization in S. aureus inhibition occurs at an AgNO3 concentration between 20-25% w/w with high amounts of TiO2 solids (7-8 g), with a resulting zone of inhibition between 26-28 mm. The quadratic model obtained, which represents the relationship between the length of the zone of inhibition with the variables considered, shows an adjustment of experimental data with a coefficient of determination (R2) of 0.82.


2021 ◽  
Vol 23 (4) ◽  
pp. 26-34
Author(s):  
Tan Phat Dao ◽  
Ngo Thi Cam Quyen ◽  
Tran Thi Yen Nhi ◽  
Chi Cuong Nguyen ◽  
Trung Thanh Nguyen ◽  
...  

Abstract Essential oil extraction technique from mandarin pixie peels by hydro-distillation is optimized by response surface methodology (RSM). Mathematical techniques were used in experimental design to evaluate the impacts of factors that affect the extraction process and improve the yield of the extraction process. A central mixed design based on influencing variables such as water ratio (3–5 mL/g), temperature (110–130 °C) and extraction time (90–150 min) was adopted with essential oil yield as the target function. Correlation analysis of the mathematical regression model showed that the quadratic polynomial model can be used to optimize hydro-distillation of pixie mandarin oil. The results showed that under the optimum extraction conditions, the highest quantity of essential oils was achieved (7.28 mL/100 g materials). In terms of statistical analysis, the significance levels (p-value <0.05) of the model showed that the experimental results had a good impact between factors. The coefficient of determination indicating the match between the experimental value and the predicted value of the model was high (R2>0.9). The chemical composition of the essential oil was analyzed by Gas Chromatography-Mass Spectrometry, revealing the dominance of limonene content (97.667%), which implies that the essential oil of pixie mandarin could be an alternative source of limonene.


2020 ◽  
Vol 34 (1) ◽  
pp. 175-191 ◽  
Author(s):  
Onukwuli Okechukwu Dominic ◽  
Anadebe Valentine Chikaodili ◽  
Okafor Chizoba Sandra

Statistical optimization was used to optimize corrosion inhibition efficiency of Sapium ellipticum leaf extract as corrosion inhibitor of aluminum in acid medium. Response surface methodology was applied, and the effects of four independent variables; acid concentration, inhibitor concentration, temperature, time, and their expected responses were determined. Central composite design a statistical tool was used to generate a total of 16 individual experimental runs, which was previously design to study the effects of these variables during corrosion process. The uniqueness of the model was scrutinized with various criteria including coefficient of determination (R2 = 0.987), p value (< 0.0001), adequate precision (30.22) and coefficient of variation (5.30). The RSM is well fitted in the model which adequately predicted the optimum inhibition efficiency of 96.73% at optimum inhibitor concentration of 1.5g/L-1, acid concentration 1 M, temperature of 303 K and time of 6 hours. Also the electrochemical concept signifies that Sapium ellipticum acts as a mixed-kind inhibitor. The experimental data obtained is in conformity with other research works.   Bull. Chem. Soc. Ethiop. 2020, 34(1), 175-191. DOI: https://dx.doi.org/10.4314/bcse.v34i1.17


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Patpen Penjumras ◽  
Russly Abdul Rahman ◽  
Rosnita A. Talib ◽  
Khalina Abdan

Response surface methodology was used to optimize preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. The effects of cellulose loading, mixing temperature, and mixing time on tensile strength and impact strength were investigated. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. A second-order polynomial model was developed for predicting the tensile strength and impact strength based on the composite design. It was found that composites were best fit by a quadratic regression model with high coefficient of determination (R2) value. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 min of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.207 MPa and 2.931 kJ/m2, respectively.


2021 ◽  
Vol 7 ◽  
Author(s):  
Mustafa Alsaady

The present study comprises the modeling and optimization of the thermal and viscous properties of nanodiamond–nickel (Ni) particle-based nanofluid in ethylene glycol. The temperature and nanoparticle weight percentage are selected as the process variables, which are considered crucial for the operational condition of the application and the economic factor. The impact of these process variables was investigated on thermal conductivity and viscosity simultaneously using response surface methodology (RSM). The models for thermal conductivity and viscosity were developed and validated using experimentally measured property data. The validated model was further used for the prediction. A detailed multi-objective optimization study was conducted to maximize thermal conductivity and minimize viscosity. The optimum results suggested that the maximum values for thermal conductivity and viscosity of nanofluids were estimated to be 0.282 Wm/°C and 5.867 mPa·s, respectively. The optimum values for the input parameters such as temperature and nanodiamond–Ni concentration were calculated to be 60°C and 2.998 wt.%, respectively. The coefficient of determination R2 for the developed model showed 0.9971 and 0.9975 for thermal conductivity and viscosity, respectively.


Author(s):  
Vikas D Singhai ◽  
Rahul Maheshwari ◽  
Swapnil Sharma ◽  
Sarvesh Paliwal

Background: Heart attack predominantly occurs during the last phase of sleep and early morning hours, causing millions of death worldwide. Hydrochlorothiazide (HCTZ) is recommended drug for the prevention of heart disease but its long action (>4 h) dosage form is lacking in the commercial market and development of extended-release formulation may have industrial significance. Regulatory agencies emphasize Quality by Design based approach for product development to entrust quality in the product. Objective: Aim of the current research was to develop a quality product profile of HCTZ modified-release tablets (MRT; ~14 h) by applying Response Surface Methodology using computational QbD approach. Methods: Three independent factors were identified by qualitative and quantitative risk assessment. Statistical terms like p-value, lack of fit, sum of square, R-squared value, model F value and linear equations were determined. Graphical tools like normal plot of residual, residual vs predicted plot and box cox plot were used to verify model selection. Graphical relationship among the critical, independent variables was represented using the Contour plot and 3-D surface plot. Design space was identified by designing overlay plot using response surface design. Results: Excellent correlation was observed between actual and predicted values. Similarity Factor (F2) of reproducible trials was 78 and 79 and content uniformity was 100.9% and 100.4%. Average weight, hardness, thickness, diameter and friability were within acceptable limits. Conclusions: QbD approach along with quality risk management tool provided an efficient and effective paradigm to build quality MRT of HCTZ.


2021 ◽  
Vol 14 ◽  
pp. 117862212110281
Author(s):  
Ahmed S. Mahmoud ◽  
Nouran Y. Mohamed ◽  
Mohamed K. Mostafa ◽  
Mohamed S. Mahmoud

Tannery industrial effluent is one of the most difficult wastewater types since it contains a huge concentration of organic, oil, and chrome (Cr). This study successfully prepared and applied bimetallic Fe/Cu nanoparticles (Fe/Cu NPs) for chrome removal. In the beginning, the Fe/Cu NPs was equilibrated by pure aqueous chrome solution at different operating conditions (lab scale), then the nanomaterial was applied in semi full scale. The operating conditions indicated that Fe/Cu NPs was able to adsorb 68% and 33% of Cr for initial concentrations of 1 and 9 mg/L, respectively. The removal occurred at pH 3 using 0.6 g/L Fe/Cu dose, stirring rate 200 r/min, contact time 20 min, and constant temperature 20 ± 2ºC. Adsorption isotherm proved that the Khan model is the most appropriate model for Cr removal using Fe/Cu NPs with the minimum error sum of 0.199. According to khan, the maximum uptakes was 20.5 mg/g Cr. Kinetic results proved that Pseudo Second Order mechanism with the least possible error of 0.098 indicated that the adsorption mechanism is chemisorption. Response surface methodology (RSM) equation was developed with a significant p-value = 0 to label the relations between Cr removal and different experimental parameters. Artificial neural networks (ANNs) were performed with a structure of 5-4-1 and the achieved results indicated that the effect of the dose is the most dominated variable for Cr removal. Application of Fe/Cu NPs in real tannery wastewater showed its ability to degrade and disinfect organic and biological contaminants in addition to chrome adsorption. The reduction in chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN), Cr, hydrogen sulfide (H2S), and oil reached 61.5%, 49.5%, 44.8%, 100%, 38.9%, 96.3%, 88.7%, and 29.4%, respectively.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1741
Author(s):  
Xin Sun ◽  
Jialing Vivien Chua ◽  
Quynh Anh Le ◽  
Francisco Trujillo ◽  
Mi-Hwa Oh ◽  
...  

The response surface methodology (RSM) and central composite design (CCD) technique were used to optimize the three key process parameters (i.e., pressure, temperature and holding time) of the high-hydrostatic-pressure (HHP) processing either standalone or combined with moderate thermal processing to modulate molecular structures of β-lactoglobulin (β-Lg) and α-lactalbumin (α-La) with reduced human IgE-reactivity. The RSM model derived for HHP-induced molecular changes of β-Lg determined immunochemically showed that temperature (temp), pressure (p2) and the interaction between temperature and time (t) had statistically significant effects (p < 0.05). The optimal condition defined as minimum (β-Lg specific) IgG-binding derived from the model was 505 MPa at 56 °C with a holding time of 102 min (R2 of 0.81 and p-value of 0.01). The validation carried at the optimal condition and its surrounding region showed that the model to be underestimating the β-Lg structure modification. The molecular change of β-Lg was directly correlated with HHP-induced dimerization in this study, which followed a quadratic equation. The β-Lg dimers also resulted in the undetectable human IgE-binding.


Sign in / Sign up

Export Citation Format

Share Document