Through Flow Analysis and Leakage Flow of a Regenerative Pump

2003 ◽  
Vol 27 (8) ◽  
pp. 1015-1022 ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 780
Author(s):  
Dong Liang ◽  
Xingmin Gui ◽  
Donghai Jin

In order to investigate the effect of seal cavity leakage flow on a compressor’s performance and the interaction mechanism between the leakage flow and the main flow, a one-stage compressor with a cavity under the shrouded stator was numerically simulated using an inhouse circumferentially averaged through flow program. The leakage flow from the shrouded stator cavity was calculated simultaneously with main flow in an integrated manner. The results indicate that the seal cavity leakage flow has a significant impact on the overall performance of the compressor. For a leakage of 0.2% of incoming flow, the decrease in the total pressure ratio was 2% and the reduction of efficiency was 1.9 points. Spanwise distribution of the flow field variables of the shrouded stator shows that the leakage flow leads to an increased flow blockage near the hub, resulting in drop of stator performance, as well as a certain destructive effect on the flow field of the main passage.


Author(s):  
Lars Moberg ◽  
Gianfranco Guidati ◽  
Sasha Savic

This paper focuses on (1) the basic compressor layout based on meridional through flow analysis and (2) the re-design of blades and vanes using sophisticated automated design optimization methods. All tools and processes are integrated into a consistent Compressor Design System, which runs on a powerful Linux cluster. This design system allows designing, analyzing and documenting blade design in mostly automated way. This frees the engineer from repetitive tasks and allows him to concentrate on a physical understanding and improvement of the compressor. The tools and methods are illustrated on the basis of an actual ALSTOM compressor. The main objectives of this upgrade are a modest increase in mass flow and an efficiency improvement. The latter is to be achieved through the replacement of NACA blades by modern Controlled Diffusion Airfoils (CDA). Results are presented including a CFD analysis of the front stages of the baseline and upgrade compressor.


Author(s):  
Man-Woong Heo ◽  
Tae-Wan Seo ◽  
Chung-Suk Lee ◽  
Kwang-Yong Kim

This paper presents a parametric study to investigate the aerodynamic and aeroacoustic characteristics of a side channel regenerative blower. Flow analysis in the side channel blower was carried out by solving three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence closure. Aeroacoustic analysis was conducted by solving the variational formulation of Lighthill’s analogy on the basis of the aerodynamic sources extracted from the unsteady flow analysis. The height and width of the blade and the angle between inlet and outlet ports were selected as three geometric parameters, and their effects on the aerodynamic and aeroacoustic performances of the blower have been investigated. The results showed that the aerodynamic and aeroacoustic performances were enhanced by decreasing height and width of blade. It was found that angle between inlet and outlet ports significantly influences the aerodynamic and aeroacoustic performances of the blower due to the stripper leakage flow.


1996 ◽  
Vol 118 (2) ◽  
pp. 276-285 ◽  
Author(s):  
O. R. Marquette ◽  
D. W. Childs

Circumferentially-grooved seals are used in centrifugal pumps to reduce leakage flow. They can also have a significant impact on pump rotordynamic characteristics. Florjancic (1990) developed an analysis for leakage and rotordynamic coefficients, using a partition of the seal into three control volumes. This paper presents a new theory, based on an extension of Florjancic’s work (1990) for circumferentially-grooved liquid seals. The current theory differs from Florjancic’s analysis in the retention of transfer momentum terms and the introduction of diverging flow in the through-flow section within a seal groove. Validation of the new analysis is achieved through a comparison with existing experimental data taken from Kilgore (1988), and Florjancic (1990). Theoretical results are reasonable and consistent; i.e., a modification in the seal parameters induces a correct evolution of the rotordynamic coefficients. Direct and cross-coupled stiffness coefficients are slightly underpredicted, whereas the direct damping coefficient is underpredicted within 40 percent. Leakage flow predictions are very good.


Author(s):  
Milan V. Petrovic ◽  
George S. Dulikravich ◽  
Thomas J. Martin

By matching a well established fast through-flow analysis code and an efficient optimization algorithm, a new design system has been developed which optimizes hub and shroud geometry and inlet and exit flow-field parameters for each blade row of a multistage axial flow turbine. The compressible steady state inviscid through-flow code with high fidelity loss and mixing models, based on stream function method and finite element solution procedure, is suitable for fast and accurate flow calculation and performance prediction of multistage axial flow turbines at design and significant off-design conditions. A general-purpose hybrid constrained optimization package has been developed that includes the following modules: genetic algorithm, simulated annealing, modified Nelder-Mead method, sequential quadratic programming, and Davidon-Fletcher-Powell gradient search algorithm. The optimizer performs automatic switching among the modules each time when the local minimum is detected thus offering a robust and versatile tool for constrained multidisciplinary optimization. An analysis of the loss correlations was made to find parameters that have influence on the turbine performance. By varying seventeen variables per each turbine stage it is possible to find an optimal radial distribution of flow parameters at the inlet and outlet of every blade row. Simultaneously, an optimized meridional flow path is found that is defined by the optimized shape of the hub and shroud. The design system has been demonstrated using an example of a single stage transonic axial gas turbine, although the method is directly applicable to multistage turbine optimization. The comparison of computed performance of initial and optimized design shows significant improvement in the turbine efficiency at design and off-design conditions. The entire design optimization process is feasible on a typical single-processor workstation.


1992 ◽  
Author(s):  
William W. Copenhaver ◽  
Chunill Hah ◽  
Steven L. Puterbaugh

A detailed aerodynamic study of a transonic, high-through-flow, single stage compressor is presented. The compressor stage was comprised of a low-aspect-ratio rotor combined alternately with two different stator designs. Both experimental and numerical studies are conducted to understand the details of the complex flow field present in this stage. Aerodynamic measurements using high-frequency, Kulite pressure transducers and conventional probes are compared with results from a three-dimensional viscous flow analysis. A steady multiple blade row approach is used in the numerical technique to examine the detailed flow structure inside the rotor and the stator passages. The comparisons indicate that many flow field features are correctly captured by viscous flow analysis, and therefore unmeasured phenomena can be studied with some level of confidence.


Author(s):  
Hongwu Zhang ◽  
Xiangyang Deng ◽  
Feng Lin ◽  
Jingyi Chen ◽  
Weiguang Huang

A numerical study of unsteady tip leakage flow in an isolated axial compressor rotor is presented, aiming at clarifying the originating flow mechanism of this unsteady phenomenon. First, CFD simulations utilizing a three-dimensional, time-accurate, Reynolds-averaged Navier-Stokes solver demonstrates that the tip leakage flow pattern, which manifests itself as an interacting cross- and through-flow in the tip region, can become periodically oscillatory in a range of operating conditions. A flow mechanism is then clarified to explain this unsteady flow phenomenon at its onset that this periodic flow oscillation is a result of dynamic balance, as opposed to static balance, between two counter-acting driving “forces”. One such “force” is the aerodynamic loading of the blades, i.e. the pressure difference across the pressure and suction sides of the compressor blades created by the main through flow. Its counter-acting “force” is the unloading of the blades, i.e. the reduction of the pressure difference caused by the tip leakage cross flow that originates from the pressure side, rushes into the suction side through the tip clearance. At operating conditions in which both “forces” are strong and in the same order, their static balance will be broken. While a larger blade loading creates a stronger tip leakage flow, the tip leakage flow tends to diminish itself because its accompanying effect is to unload the blade. Since the weaker tip leakage flow cannot overcome the ability of the main through flow to recover the original aerodynamic loading for the blade, the whole process restarts and periodically oscillatory tip leakage flow forms. Furthermore, a dimensionless analysis shows that the onset of the observed unsteadiness is conditioned by the tip leakage flow, which can or cannot reach the neighboring blade before mixing with the main flow.


Sign in / Sign up

Export Citation Format

Share Document