CFD Analysis for Optimization of Guide Vane of Axial-Flow Pump

2016 ◽  
Vol 40 (8) ◽  
pp. 519-525 ◽  
Author(s):  
Jeong-Eui Yun
Author(s):  
Sang-Won Kim ◽  
Youn-Jea Kim

An axial-flow pump has a relatively high discharge flow rate and specific speed at a relatively low head and it consists of an inlet guide vane, impeller, and outlet guide vane. The interaction of the flow through the inlet guide vane, impeller, and outlet guide vane of the axial-flow pump has a significant effect on its performance. Of those components, the guide vanes especially can improve the head and efficiency of the pump by transforming the kinetic energy of the rotating flow, which has a tangential velocity component, into pressure energy. Accordingly, the geometric configurations of the guide vanes such as blade thickness and angle are crucial design factors for determining the performance of the axial-flow pump. As the reliability of Computational Fluid Dynamics (CFD) has been elevated together with the advance in computer technology, numerical analysis using CFD has recently become an alternative to empirical experiment due to its high reliability to measure the flow field. Thus, in this study, 1,200mm axial-flow pump having an inlet guide vane and impeller with 4 blades and an outlet guide vane with 6 blades was numerically investigated. Numerical study was conducted using the commercial CFD code, ANSYS CFX ver. 16.1, in order to elucidate the effect of the thickness and angle of the guide vanes on the performance of 1,200mm axial-flow pump. The stage condition, which averages the fluxes between interfaces and is accordingly appropriate for the evaluation of pump performance, was adopted as the interface condition between the guide vanes and the impeller. The rotational periodicity condition was used in order to enable a simplified geometry to be used since the guide vanes feature multiple identical regions. The shear stress transport (SST) k-ω model, predicting the turbulence within the flow in good agreement, was also employed in the CFD calculation. With regard to the numerical simulation results, the characteristics of the pressure distribution were discussed in detail. The pump performance, which will determine how well an axial-flow pump will work in terms of its efficiency and head, was also discussed in detail, leading to the conclusion on the optimal blade thickness and angle for the improvement of the performance. In addition, the total pressure loss coefficient was considered in order to investigate the loss within the flow paths depending on the thickness and angle variations. The results presented in this study may give guidelines to the numerical analysis of the axial-flow pump and the investigation of the performance for further optimal design of the axial-flow pump.


Author(s):  
Youn-Sung Kim ◽  
Hyeon-Seok Shim ◽  
Kwang-Yong Kim

This study aims to evaluate effects of blade pitch and inlet guide vane (IGV) angle on the performance characteristics of a submersible axial-flow pump. According to the results of the previous study, the efficiency at the design and over-load conditions were significantly affected by the angle of IGV due to change in the incidence angle. To investigate the interactional effects of IGV and blade angle are analyzed using three-dimensional Reynolds-averaged Navier-Stokes equations with shear stress transport turbulence model. The hexahedral grids are used in the computational domain and a grid-dependency test is performed to obtain an optimal number of the grids. In this study, combinations of three different blade angles and two different IGV angles are tested. Adjusting angle of IGV increases the total pressure of the pump with a blade pitch increase, which can increase the efficiency of the pump in operating range.


2013 ◽  
Vol 52 (3) ◽  
pp. 032011
Author(s):  
W J Wang ◽  
Q H Liang ◽  
Y Wang ◽  
Y Yang ◽  
G Yin ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Fan Yang ◽  
Hao-ru Zhao ◽  
Chao Liu

In order to investigate the influence of adjustable outlet guide vane on the hydraulic performance of axial-flow pump at part loads, the axial-flow pump with 7 different outlet guide vane adjustable angles was simulated based on the RNG k-ε turbulent model and Reynolds time-averaged equations. The Vector graphs of airfoil flow were analyzed in the different operating conditions for different adjustable angles of guide vane. BP-ANN prediction model was established about the effect of adjustable outlet guide vane on the hydraulic performance of axial-flow pump based on the numerical results. The effectiveness of prediction model was verified by theoretical analysis and numerical simulation. The results show that, with the adjustable angle of guide vane increasing along clockwise, the high efficiency area moves to the large flow rate direction; otherwise, that moves to the small flow rate direction. The internal flow field of guide vane is improved by adjusting angle, and the flow separation of tail and guide vane inlet ledge are decreased or eliminated, so that the hydraulic efficiency of pumping system will be improved. The prediction accuracy of BP-ANN model is 1%, which can meet the requirement of practical engineering.


2013 ◽  
Vol 444-445 ◽  
pp. 486-489
Author(s):  
Xiao Xu Zhang ◽  
Hong Ming Zhang ◽  
Xiao Ping Li

To make the submersible axial flow pump have better performance, it is very significant to know about the flowing distributions. Based on N-S equations and Standard turbulence model and SIMPLE algorithm, a CFD analysis was made of the full flow passage in this type of pump. The study result shows the flow rule and will provide a guide for the designing and the producing practice.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Chaoyue Wang ◽  
Fujun Wang ◽  
Yuan Tang ◽  
Benhong Wang ◽  
Zhifeng Yao ◽  
...  

Abstract Stator corner separation flow existing in the guide-vane domain has significant effects on the characteristics of an axial-flow pump. The objective of this paper is to investigate the vortical structures in stator corner separation flow. Transient numerical simulation with a proof experiment was conducted for an axial-flow pump. Structural features of the vortices and their effects on velocity moment attenuation and pressure fluctuations in the guide-vane domain were analyzed. Horn-like vortices are found in the stator corner separation flow. A full cycle of the horn-like vortex evolution, “inception-growth-development-decay,” is presented. During this transit process, the vortex tube is gradually elongated and deformed, which forms an oblique separation line on the vane suction surface. High velocity moment always exists in the flow passages of the guide-vane domain, and the uniformity of main flows is gradually reduced. Meanwhile, periodic pressure fluctuations arise. The maximum amplitude of pressure fluctuations in the flow passages occurs in the region where the horn-like vortex cores at the “growth” stage lie in, which is approximately 3.39 times higher than that in the vaneless region between the impeller and guide-vane. The dominant frequency of pressure fluctuations in the flow passages is approximately 0.75 times the rotating frequency, which is close to the frequency of the full cycle of the horn-like vortex evolution. Horn-like vortices have remarkable effects on the flow fields, and more attention should be paid to them.


Author(s):  
D. G. Lin ◽  
B. P. Huynh

In an effort to design a rectangular-box chamber for model testing and flow visualization, to be fitted into an existing horizontal axial-flow pump circuit, shown in Fig.1[1], a computational study has been conducted into the flow of water as it expands from a 400-mm-diameter round pipe into a 3-D-rectangular-box configuration. The geometry is asymmetric; the chamber’s bottom is aligned with the pipe’s bottom, but the pipe’s top is expanded into the chamber’s top, shown in Fig. 2. A commercial Computational Fluid Dynamics (CFD) software package is used to simulate the isothermal turbulent flow, using the standard K-epsilon turbulence model. The study examines the benefits of the guide vane in reducing the transition region’s length and producing the desirable flow pattern in the test chamber.


2014 ◽  
Vol 26 (6) ◽  
pp. 894-901 ◽  
Author(s):  
Hua Zhang ◽  
Wei-dong Shi ◽  
Bin Chen ◽  
Qi-hua Zhang ◽  
Wei-dong Cao

1990 ◽  
Vol 112 (2) ◽  
pp. 294-297 ◽  
Author(s):  
J. H. Horlock

An actuator disk analysis is given of the flow through a guide vane and rotor combination. It is shown that changes in total pressure across the rotor are in general related to circumferential variations in guide vane outlet angle. In particular known variations in inlet total pressure may be eliminated by suitable circumferential changes in guide vane stagger.


Sign in / Sign up

Export Citation Format

Share Document