Transition to the 4th Low Temperature District Heating Systems in SEOUL District Heating System

2021 ◽  
Vol 45 (12) ◽  
pp. 691-699
Author(s):  
Hyun Ju Kwag ◽  
Hyoung Woon Song ◽  
Sung Pill Yun ◽  
Seung Ho Han
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3218
Author(s):  
Pedro Durán ◽  
Herena Torio ◽  
Patrik Schönfeldt ◽  
Peter Klement ◽  
Benedikt Hanke ◽  
...  

There are 1454 district heating systems in Germany. Most of them are fossil based and with high temperature levels, which is neither efficient nor sustainable and needs to be changed for reaching the 2050 climate goals. In this paper, we present a case study for transforming a high to low temperature district heating system which is more suitable for renewable energy supply. With the Carnot Toolbox, a dynamic model of a potential district heating system is simulated and then transformed to a low temperature supply. A sensitivity analysis is carried out to see the system performance in case space constrains restrict the transformation. Finally, an economic comparison is performed. Results show that it is technically possible to perform the transformation until a very low temperature system. The use of decentralized renewable sources, decentralized heat storage tanks and the placement of a heat pump on each building are the key points to achieve the transformation. Regarding the sensitivity analysis, the transformation is worth doing until the seasonal storage and solar collector field sizes are reduced to 60% and 80% of their values in the reference case, respectively. The economic analysis shows, however, that it is hard for highly efficient low temperature renewable based heat networks to compete with district heating systems based on a centralized fossile CHP solution. Thus, though the presented transformation is technically possible, there is a strong need to change existing economic schemes and policies for fostering a stronger promotion of renewable energy policies in the heat sector.


Author(s):  
Krzysztof Badyda ◽  
Wojciech Bujalski ◽  
Jarosław Milewski ◽  
Michał Warchoł

Heat accumulators in large district heating systems are used to buffer heat production. Their main purpose is to make heat production as independent as possible from district heating system demand. To do this effectively a heat accumulator of appropriate capacity must be selected. In large district heating systems, heat accumulators can be used for equalising production over periods lasting a few hours. Accumulators can be used for optimising electricity and heat production to achieve possible highest income. It may be important in situations where on-line prices change. An optimising algorithm for heat accumulator use is shown and commented. Typical working situations are simulated and results presented.


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3673-3684
Author(s):  
Borna Doracic ◽  
Marino Grozdek ◽  
Tomislav Puksec ◽  
Neven Duic

District heating systems already play an important role in increasing the sustainability of the heating sector and decreasing its environmental impact. However, a high share of these systems is old and inefficient and therefore needs to change towards the 4th generation district heating, which will incorporate various energy sources, including renewables and excess heat of different origins. Especially excess heat from industrial and service sector facilities is an interesting source since its potential has already been proven to be highly significant, with some researches showing that it could cover the heat demand of the entire residential and service sector in Europe. However, most analyses of its utilisation in district heating are not done on the hourly level, therefore not taking into account the variability of its availability. For that reason, the main goal of this work was to analyse the integration of industrial excess heat into the district heating system consisting of different configurations, including the zero fuel cost technologies like solar thermal. Furthermore, cogeneration units were a part of every simulated configuration, providing the link to the power sector. Excess heat was shown to decrease the operation of peak load boiler and cogeneration, that way decreasing the costs and environmental effect of the system. However, since its hourly availability differs from the heat demand, thermal storage needs to be implemented in order to increase the utilisation of this source. The analysis was performed on the hourly level in the energyPRO software


2021 ◽  
Vol 246 ◽  
pp. 09003
Author(s):  
Haoran Li ◽  
Juan Hou ◽  
Yuemin Ding ◽  
Natasa Nord

Peak load has significant impacts on the economic and environmental performance of district heating systems. Future sustainable district heating systems will integrate thermal storages and renewables to shave their peak heat demand from traditional heat sources. This article analysed the techno-economic potential of implementing thermal storage for peak load shaving, especially for the district heating systems with waste heat recovery. A campus district heating system in Norway was chosen as the case study. The system takes advantage of the waste heat from the campus data centre. Currently, about 20% of the heating bill is paid for the peak load, and a mismatch between the available waste heat and heat demand was detected. The results showed that introducing water tank thermal storage brought significant effects on peak load shaving and waste heat recovery. Those effects saved up to 112 000 EUR heating bills annually, and the heating bill paid for the peak load could be reduced by 15%. Meanwhile, with the optimal sizing and operation, the payback period of the water tank could be decreased to 13 years. Findings from this study might help the heat users to evaluate the economic feasibility of introducing thermal storage.


2021 ◽  
Vol XXVIII (4) ◽  
pp. 121-132
Author(s):  
Corina Chelmenciuc ◽  
◽  
Constantin Borosan ◽  
Vadim Lisnic ◽  
◽  
...  

Nowadays, both globally and in Europe, and nationally, there is a tendency to promote district heating systems to the detriment of individual ones to heat dwellings in urban areas. The need to develop the DHSs is indisputable considering the topicality of global warming, the depletion of the primary energy resources and the energy efficiency trend. This article presents the method of applying regression analysis in feasibility studies for the projects of new heat consumers connection to the district heating system (hereinafter – DHS) or previously disconnected consumers reconnection via individual heating points (hereinafter – IHP) when the necessary investments are to be borne by the DHS operator, and the thermal energy is produced in cogeneration. At the same time, it is demonstrated that there is a direct and linear correlation between fuel consumption and electricity and heat produced in cogeneration at CHP plant.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 113 ◽  
Author(s):  
Sara Månsson ◽  
Kristin Davidsson ◽  
Patrick Lauenburg ◽  
Marcus Thern

In order to develop more sustainable district heating systems, the district heating sector is currently trying to increase the energy efficiency of these systems. One way of doing so is to identify customer installations in the systems that have poor cooling performance. This study aimed to develop an algorithm that was able to detect the poorly performing installations automatically using meter readings from the installations. The algorithm was developed using statistical methods and was tested on a data set consisting of data from 3000 installations located in a district heating system in Sweden. As many as 1273 installations were identified by the algorithm as having poor cooling performance. This clearly shows that it is of major interest to the district heating companies to identify the installations with poor cooling performance rapidly and automatically, in order to rectify them as soon as possible.


2010 ◽  
Vol 14 (suppl.) ◽  
pp. 41-51 ◽  
Author(s):  
Mladen Stojiljkovic ◽  
Mirko Stojiljkovic ◽  
Bratislav Blagojevic ◽  
Goran Vuckovic ◽  
Marko Ignjatovic

Implementation of co-generation of thermal and electrical energy in district heating systems often results with higher overall energy efficiency of the systems, primary energy savings and environmental benefits. Financial results depend on number of parameters, some of which are very difficult to predict. After introduction of feed-in tariffs for generation of electrical energy in Serbia, better conditions for implementation of co-generation are created, although in district heating systems barriers are still present. In this paper, possibilities and effects of implementation of natural gas fired cogeneration engines are examined and presented for the boiler house that is a part of the district heating system owned and operated by the Faculty of Mechanical Engineering in Nis. At the moment, in this boiler house only thermal energy is produced. The boilers are natural gas fired and often operate in low part load regimes. The plant is working only during the heating season. For estimation of effects of implementation of co-generation, referent values are taken from literature or are based on the results of measurements performed on site. Results are presented in the form of primary energy savings and greenhouse gasses emission reduction potentials. Financial aspects are also considered and triangle of costs is shown.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Fang Fang ◽  
Nan Wang

With the rapid development of China’s urbanization, the proportion between the heating consumption and the energy consumption of the whole society keeps rising in recent years. For a district heating system, the selection of the heat source makes significant impact on the energy efficiency and the pollutant emissions. By integrating the methods of the Analytic Hierarchy Process (AHP) and the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE), a multiple-attribute decision-making scheme for the heat source selection of district heating systems is proposed in this paper. As a core part of this scheme, a comprehensive benefit index with hierarchical parallel structure is constructed. The economic benefit, environment benefit, and technical benefit can be reflected with a certain percentage in the comprehensive benefit index. To test the efficiency of the proposed scheme, a case study for a large-scale district heating system in Beijing is carried out, where five kinds of heat sources (water source heat pump, ground source heat pump, gas-fired boiler, coal-fired boiler, and oil-fired boiler) are taken into account. The analysis and instructions for the final sorting result are also demonstrated.


2014 ◽  
Vol 35 (1) ◽  
pp. 99-115
Author(s):  
Andrzej Ziębik ◽  
Paweł Gładysz

Abstract The paper presents a modified algorithm for choosing the optimal coefficient of the share of cogeneration in district heating systems taking into account additional benefits concerning the promotion of highefficiency cogeneration and biomass cofiring. The optimal coefficient of the share of cogeneration depends first of all on the share of the heat required for preparing the hot tap water. The final result of investigations is an empirical equation describing the influence of the ratio of the heat flux for the production of hot tap water to the maximum flux for space heating and ventilation, as well as the share of chemical energy of biomass in the fuel mixture on the optimal value of the share of cogeneration in district heating systems. The approach presented in the paper may be applied both in back-pressure combined heat and power (CHP) plants and in extraction-condensing CHP plants.


2020 ◽  
Vol 209 ◽  
pp. 02027
Author(s):  
Dmitry Sokolov ◽  
Evgeny Barakhtenko

The paper presents a new methodological approach to developing a universal platform for the design of district heating systems. The reasons for the development of the platform are considered and a scientific statement of the problem is given. The main methodological results obtained during the development of the platform are presented. The description of the scientific and practical significance of the results is given. A new methodological approach was developed using modern information technologies. The methodological approach is based on the paradigm of Model-Driven Engineering. The essence of this paradigm is that the software is generated on the base of formal description provided by the models. The proposed approach allows one to successfully solve the problem of separation of methods for solving applied problems and models of elements of a district heating system. The paper describes the developed architecture of the software platform. A description of the architectural subsystems of the platform is presented: the computing subsystem and the graphics subsystem.


Sign in / Sign up

Export Citation Format

Share Document