scholarly journals UTILIZATION BAYAH BANTEN ZEOLITE AS A CATALYST AND BACTERIA AS A PRETREATMENT FOR BIODIESEL FROM WASTE COOKING OIL

2018 ◽  
Vol 2 (2) ◽  
pp. 85-92
Author(s):  
F. Fitriyah ◽  
Frebhika Sri Puji Pangesti

ABSTRAK Pemanfaatan zeolit alam Bayah Banten sebagai katalis homogen dalam penelitian ini adalah sebagai alternatif penggunaan katalis sintetik. Selain itu bakteri Rhizopus sp. digunakan sebagai pretreatment biokatalis dalam pemanfaatan minyak jelantah untuk pembuatan biodiesel. Hal ini akan memberikan beberapa keuntungan, yaitu dapat mereduksi limbah minyak jelantah,  mengurangi biaya produksi pembuatan bahan bakar serta memanfaatkan kekayaan alam terutama yang terdapat di Provinsi Banten. Penelitian ini bertujuan mempelajari metode pembuatan biodiesel dari minyak jelantah menggunakan katalis zeolit alam Bayah dan biokatalis bakteri  Rhizopus sp serta uji kualitatif dan kuantitatif standar biodiesel. Metode yang digunakan dalam penelitian ini adalah reaksi esterifikasi/transesterifikasi minyak dengan alkohol rantai pendek melalui bantuan katalis. Hasil penelitian ini menunjukan minyak jelantah yang sudah diolah menjadi  biodiesel, yaitu viskositas (pada suhu  40°C) sebesar 0,862 g/ml dan 29,7, kadar air 0,05 % , titiknyala 120°C, titiktuang 18°C, bilangan asam 0,49 mg KOH/g, angka setana 55, belerang 0,11 mg/kg, fosfor 1,7 mg/kg, waktu bakar 43 detik, residu 1,8 % , sisa pembakaran 9,6% telah memenuhi standar biodiesel SNI-04-7182-201 Kata Kunci : biodiesel, zeolite bayah, minyak jelantah   ABSTRACT Utilization of Banten Bayah natural zeolite as a homogeneous catalyst in making biodiesel is an alternative to the use of synthetic catalysts. In addition, the bacteria Rhizopus sp., was used as a biocatalyst in waste cooking oil for the manufacture of biodiesel. This will provide several advantages, reduces waste cooking oil, reduce cost biodiesel production and utilize natural resources, especially those found in Banten Province. This study aims to study the method of making biodiesel from waste cooking oil using natural Bayah zeolite catalyst and Rhizopus sp bacterial as biocatalyst as the quantitative and quantitative standard tests of biodiesel. The methods in this study is the esterification / transesterification reaction of oil with short chain alcohols through of a catalyst. The results of this research show that waste cooking oil has been processed into biodiesel that is density and viscosity parameters (at 40°C ) is 0.862 g/mL and 29.7, 0.05% moisture content 120 ° C point, 18 ° C point, acid number is 0.49 mg KOH / g, setana number 55, sulfur content 0.11 mg / kg, phosphorus content 1.7 mg / kg, burn time 43 seconds, residue 1.8%, residual combustion 9.6% it has fulfilled the biodiesel standard SNI-04-7182-2012. Keyword : biodiesel, zeolite bayah, bacteria, cooking oil

REAKTOR ◽  
2018 ◽  
Vol 18 (03) ◽  
pp. 149 ◽  
Author(s):  
Luqman Buchori ◽  
Dinda Labibah Ubay ◽  
Khonsa Syahidah

Biodiesel is one of diesel fuel alternative made from renewable resources such as vegetable oils and animal fats. One of the natural ingredients that can be used as a material in the production of biodiesel is waste cooking oil (WCO). Biodiesel from WCO can be made through a transesterification reaction using a CaO catalyst. Free fatty acid (FFA) content in WCO needs to be reduced by activated charcoal adsorption. This research aims to determine the optimum time of adsorption by activated charcoal that made from salak peel and to determine the effect of transesterification temperature on biodiesel yield. The results showed that the FFA content of WCO decrease from 6.16% to 0.224% with adsorption time is 80 minutes and 10 gram of activated charcoal. Biodiesel yield increase by increasing transesterification temperature. The appropriate temperature is 50oC with 86.40% of yield, 887.2 kg/m3of density, 5.174 mm2/s of kinematic viscosity and acid number 0.421 mg KOH/gram sample. The composition of alkyl ester was obtained 65.54% with a FAAE yield of 56.63%.


Food Research ◽  
2020 ◽  
Vol 4 (S1) ◽  
pp. 220-226
Author(s):  
Widayat ◽  
Hadiyanto ◽  
D.A. Putra ◽  
Nursafitri I. ◽  
H. Satriadi ◽  
...  

The objective of this research was to produce biodiesel using waste cooking oil and various magnetite catalysts with the esterification-transesterification process. Magnetite catalysts tested were α- Fe2O3, α- Fe2O3/Al2O3, α- Fe2O3/ZSM-5 catalysts. Catalysts were prepared through chemical precipitation and calcination. The esterificationtransesterification process was carried out with the conditions WCO: methanol molar ratio of 15:1, catalyst (1% wt of oil), heated at 65℃ for 3 hrs. The results showed biodiesel production using α- Fe2O3-ZSM-5 catalyst obtained higher %FAME (83.28%), yield (91.915%) and monoglyceride content (16.72%) compared to others due to larger pore volume. Biodiesel produced passed the requirement of Indonesian National Standard (SNI) based on density, acid number and viscosity.


Author(s):  
J. Vaishnavi Sree ◽  
Boddu Akhil Chowdary ◽  
Kottu Santosh Kumar ◽  
Mohana Preethi Anbazhagan ◽  
Sindhu Subramanian

2020 ◽  
Vol 8 ◽  
Author(s):  
Eslam G. Al-Sakkari ◽  
Mohammed G. Mohammed ◽  
Alaaeldin A. Elozeiri ◽  
Omar M. Abdeldayem ◽  
Mahmoud M. Habashy ◽  
...  

This study aims to provide the technoeconomic aspects of two clean processes for biodiesel production. The first process utilizes waste cooking oil as a feedstock and potassium hydroxide as a homogeneous catalyst. The second process uses cement kiln dust heterogeneous catalyst and virgin soybean oil. A comparison was performed between the results of the technical and economic assessments to determine the more feasible process. Theoretical purities of biodiesel and glycerol obtained upon conducting the simulation of both processes are high, i.e., 99.99%. However, the homogeneous process is economically superior as its payback period is slightly more than 1 year while the return on investment is higher than 74%, and the unit production cost is USD 1.067/kg biodiesel. Sensitivity analysis revealed that the profitability of biodiesel production is very sensitive to the feedstock price and recommends shifting toward waste vegetable oils as a cheap feedstock to have a feasible and economic process.


Konversi ◽  
2019 ◽  
Vol 8 (2) ◽  
Author(s):  
Cindi Ramayanti ◽  
Sarah Dampang

The production costs of biodiesel based on vegetable oil is not economical, so it is difficult for biodiesel to compete with petrodiesel. Waste cooking oil can be used as a source of raw materials for biodiesel production. This research aims to produce biodiesel from waste cooking oil. The initial stage is to pretreatment of waste cooking oil. At this step, the waste cooking oil is filtered to separate impurities from the raw material. After that, it is heated to 100 oC to remove the water content. The second stage is transesterification. At this stage, the reaction time remains for one hour at a temperature of 65 oC. the product is centrifuged to separate the catalyst. The highest yield was obtained in the 12: 1 molar ratio variable and the amount of catalyst 3%, which was 0.922. Yield obtained ranged from 0.853-0.922. An increase in the molar ratio is significant enough to increase the amount of yield. However, increasing the amount of catalyst especially from 2% to 3% is not significant enough to increase biodiesel yield. The characteristics of biodiesel produced are in accordance with SNI Biodiesel, density 870 Kg / cm3, viscosity 4.25 cSt, flash point 170, and acid number 0.4 mg-KOH/g biodiesel.


Molekul ◽  
2010 ◽  
Vol 5 (1) ◽  
pp. 33
Author(s):  
Dwi Kartika ◽  
Eva Vaulina ◽  
Senny Widyaningsih ◽  
Moch. Chasani

Synthesis of biodiesel from waste cooking oil using activated natural zeolite catalyst has been done. Activation of the natural zeolite was done by refluxing with HCl 6M for 30 min, calcining and oxydizing at 500°C for 2 hours, consecutively. The variation of stirring speed were 350, 700, 1100 and 1200 rpm. The variation of reaction time were varied from 15, 30, 45, 60, and 120 min. The conversion of biodiesel was determined by 1H NMR spectrometer. The results showed that the optimum condition of biodiesel synthesis using esterification process were reached at 700 rpm and 15 minutes, which gave biodiesel conversion of 100%.


Author(s):  
Donald Raoul Tchuifon Tchuifon ◽  
Serges Bruno Lemoupi Ngomade ◽  
George Nche Ndifor-Angwafor ◽  
Paul Alain Nanssou Kouteu ◽  
Tchoumboue Nsah-Ko ◽  
...  

Waste cooking oils are an agro-food waste with adverse effects on the health of living organisms and the environment. The main objective of this work is to valorize waste cooking oil for the synthesis and physicochemical characterization of biodiesel. The method used is based on the transesterification reaction of the oils using methanol and a basic homogeneous catalyst. In this study we employ waste from refined palm oil used for frying doughnuts. After optimization a reaction time of 2 hours, KOH catalyst, and a molar ratio of 9:1 were selected to obtain a good quality biodiesel. Physicochemical characterization was performed on the biodiesel to obtain its density, viscosity, calorific value, acid number, saponification index and IR spectral features. The analysis shows that the biodiesel obtained after transesterification has physicochemical characteristics similar to those of diesel and is consistent with American standards.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Hussein Hamed ◽  
Awad Mohammed ◽  
OMAR HABEEB ◽  
Obed Ali ◽  
Omar Aljaf ◽  
...  

Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


ACS Omega ◽  
2021 ◽  
Vol 6 (13) ◽  
pp. 9204-9212
Author(s):  
Neelam Khan ◽  
Sang H. Park ◽  
Lorraine Kadima ◽  
Carlove Bourdeau ◽  
Evelyn Calina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document