Some Generalizations of an Analysis of 2016-2017 Blackouts in the Unified Power System of Russia

Author(s):  
N.I. Voropai ◽  
D.N. Efimov ◽  
A.B. Osak ◽  
M.V. Chulyukova

The paper presents a brief description of the sequence of events and processes observed during three cascading blackouts that occurred in 2016 - 2017 in the Unified Energy System (UES) of Russia. The key factors that contributed to their occurrence, development, and interruption were determined. The objectives of research on the development of measures to reduce the risk of such system-wide accidents are formulated.

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1447-1452
Author(s):  
Vincent Mazauric ◽  
Ariane Millot ◽  
Claude Le Pape-Gardeux ◽  
Nadia Maïzi

To overcome the negative environemental impact of the actual power system, an optimal description of quasi-static electromagnetics relying on a reversible interpretation of the Faraday’s law is given. Due to the overabundance of carbon-free energy sources, this description makes it possible to consider an evolution towards an energy system favoring low-carbon technologies. The management for changing is then explored through a simplified linear-programming problem and an analogy with phase transitions in physics is drawn.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 584
Author(s):  
Chiara Magni ◽  
Sylvain Quoilin ◽  
Alessia Arteconi

Flexibility is crucial to enable the penetration of high shares of renewables in the power system while ensuring the security and affordability of the electricity dispatch. In this regard, heat–electricity sector coupling technologies are considered a promising solution for the integration of flexible devices such as thermal storage units and heat pumps. The deployment of these devices would also enable the decarbonization of the heating sector, responsible for around half of the energy consumption in the EU, of which 75% is currently supplied by fossil fuels. This paper investigates in which measure the diffusion of district heating (DH) coupled with thermal energy storage (TES) units can contribute to the overall system flexibility and to the provision of operating reserves for energy systems with high renewable penetration. The deployment of two different DH supply technologies, namely combined heat and power units (CHP) and large-scale heat pumps (P2HT), is modeled and compared in terms of performance. The case study analyzed is the future Italian energy system, which is simulated through the unit commitment and optimal dispatch model Dispa-SET. Results show that DH coupled with heat pumps and CHP units could enable both costs and emissions related to the heat–electricity sector to be reduced by up to 50%. DH systems also proved to be a promising solution to grant the flexibility and resilience of power systems with high shares of renewables by significantly reducing the curtailment of renewables and cost-optimally providing up to 15% of the total upward reserve requirements.


Author(s):  
M. S. A. Mustaza ◽  
M. A. M. Ariff ◽  
Sofia Najwa Ramli

Energy storage system (ESS) plays a prominent role in renewable energy (RE) to overcome the intermittent of RE energy condition and improve energy utilization in the power system. However, ESS for residential applications requires specific and different configuration. Hence, this review paper aims to provide information for system builders to decide the best setup configuration of ESS for residential application. In this paper, the aim is to provide an insight into the critical elements of the energy storage technology for residential application. The update on ESS technology, battery chemistry, battery charging, and monitoring system and power inverter technology are reviewed. Then, the operation, the pro, and cons of each variant of these technologies are comprehensively studied. This paper suggested that the ESS for residential ESS requires NMC battery chemistry because it delivers an all-rounded performance as compared to other battery chemistries. The four-stages constant current (FCC) charging technique is recommended because of the fast charging capability and safer than other charging techniques reviewed. Next, the battery management system (BMS) is recommended to adapt in advance machine learning method to estimate the state of charge (SOC), state of health (SOH) and internal temperature (IT) to increase the safety and prolong the lifespan of the batteries. Finally, these recommendations and solutions aimed to improve the utilization of RE energy in power system, especially in residential ESS application and offer the best option that is available on the shelf for the residential ESS application in the future.


2021 ◽  
Vol 11 (15) ◽  
pp. 6968
Author(s):  
Hong Li ◽  
Yazhong Ye ◽  
Lanxin Lin

The integrated power and natural gas energy system (IPGES) is of great significance to promote the coordination and complementarity of multi-energy flow, and it is an important carrier to increase the proportion of wind power accommodation and achieve the goal of carbon emission reduction. In this paper, firstly, the reward and punishment ladder-type carbon trading model is constructed, and the impact of the carbon trading mechanisms on the carbon emission sources in the power system is comparatively analyzed. Secondly, in order to achieve a reasonable allocation of carbon resources in IPGES, a bi-level optimization model is established while taking into account the economics of dispatching and the requirements of carbon emission reduction. Among them, the outer layer is the optimal carbon price solution model considering carbon trading; in the inner layer, considering the power system constraints, natural gas system constraints, and coupling element operation constraints, a stochastic optimal dispatching model of IPGES based on scenario analysis is established. Scenario generation and reduction methods are used to deal with the uncertainty of wind power, and the inner model is processed as a mixed integer linear programming problem. In the MATLAB environment, program the dichotomy and call the Gurobi optimization solver to complete the interactive solution of the inner and outer models. Finally, case studies that use an integrated IEEE 39-bus power system and Belgian 20-node gas system demonstrate the effectiveness and scalability of the proposed model and optimization method.


A solar-wind hybrid system plays a key role in power generation and becomes very important role to smart grid power systems. Also, the wind-solar hybrid energy storage control systems in coordination of energy markets, made economical to the electrical power system power system. Hybrid renewable energy system connected micro-grid consists of significant identification; in view of solve the rising electrical energy demand. In addition to this the problem of harmonic distortion in micro-grids due to the non-linear loads is an indispensable topic of study. Also, it is very significant for the better understanding of the power quality impacts in micro-grids. This paper presents detail analysis of different control techniques for optimization of harmonics in smart grid system and enhancement in power quality of the smart grid system. The performance of the control system is verified through the MATLAB simulation of the hybrid solar-wind electrical energy system.


2017 ◽  
pp. 1438-1460 ◽  
Author(s):  
Vincent Anayochukwu Ani

Telecommunications industry requires efficient, reliable and cost-effective hybrid power system as alternative to the power supplied by diesel generator. This paper proposed an operational control algorithm that will be used to control and supervise the operations of PV/Wind-Diesel hybrid power generation system for GSM base station sites. The control algorithm was developed in such a way that it coordinates when power should be generated by renewable energy (PV panels and Wind turbine) and when it should be generated by diesel generator and is intended to maximize the use of renewable system while limiting the use of diesel generator. Diesel generator is allocated only when the demand cannot be met by the renewable energy sources including battery bank. The developed algorithm was used to study the operations of the hybrid PV/Wind-Diesel energy system. The control simulation shows that the developed algorithm reduces the operational hours of the diesel generator thereby reducing the running cost of the hybrid energy system as well as the pollutant emissions. With the data collected from the site, a detailed economic and environmental analysis was carried out using micro power optimization software homer. The study evaluates savings associated with conversion of the diesel powered system to a PV/Wind-Diesel hybrid power system.


2018 ◽  
Vol 58 ◽  
pp. 01004
Author(s):  
Magomed Gadzhiev ◽  
Misrikhan Misrikhanov ◽  
Vladimir Ryabchenko ◽  
Nikita Vasilenko

A randomized algorithm for computing the invariant zeros of the electric energy system as a dynamical system with many inputs and many outputs (MIMO system), specified in the descriptor form, is proposed. Definitions of invariant zeros are carried out by randomizing the original MIMO system and it reduces to a generalized eigenvalue problem for a numerical matrix. The application of the algorithm is illustrated by the example of calculating the invariant zeros of the linear model of the United Power System.


Sign in / Sign up

Export Citation Format

Share Document