scholarly journals Characterizing and Validating Stripe Rust Resistance Loci in US Pacific Northwest Winter Wheat Accessions ( Triticum aestivum L.) by Genome‐wide Association and Linkage Mapping

2018 ◽  
Vol 11 (1) ◽  
pp. 170087 ◽  
Author(s):  
Weizhen Liu ◽  
Yukiko Naruoka ◽  
Kaitlin Miller ◽  
Kimberly A. Garland‐Campbell ◽  
Arron H. Carter
2020 ◽  
Vol 19 (8) ◽  
pp. 2035-2043 ◽  
Author(s):  
Sher Muhammad ◽  
Muhammad Sajjad ◽  
Sultan Habibullah Khan ◽  
Muhammad Shahid ◽  
Muhammad Zubair ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2174-2180 ◽  
Author(s):  
Fangping Yang ◽  
Jindong Liu ◽  
Ying Guo ◽  
Zhonghu He ◽  
Awais Rasheed ◽  
...  

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a globally devastating disease of common wheat (Triticum aestivum L.), resulting in substantial economic losses. To identify effective resistance genes, a genome-wide association study was conducted on 120 common wheat lines from different wheat-growing regions of China using the wheat 90K iSelect SNP array. Seventeen loci were identified, explaining 9.5 to 21.8% of the phenotypic variation. Most of these genes were detected in the A (seven) and B (seven) genomes, with only three in the D genome. Among them, 11 loci were colocated with known resistance genes or quantitative trait loci reported previously, whereas the other six are likely new resistance loci. Annotation of flanking sequences of significantly associated SNPs indicated the presence of three important candidate genes, including E3 ubiquitin-protein ligase, F-box repeat protein, and disease resistance RPP13-like protein. This study increased our knowledge in understanding the genetic architecture for stripe rust resistance and identified wheat varieties with multiple resistance alleles, which are useful for improvement of stripe rust resistance in breeding.


2020 ◽  
Vol 61 (1) ◽  
pp. 37-50 ◽  
Author(s):  
Bin Cheng ◽  
Xu Gao ◽  
Ning Cao ◽  
Yanqing Ding ◽  
Yu Gao ◽  
...  

AbstractWheat stripe rust can cause considerable yield losses, and genetic resistance is the most effective approach for controlling the disease. To identify the genomic regions responsible for Puccinia striiformis f. sp. tritici (Pst) resistance in a set of winter wheat strains mainly from southwestern China, and to identify DNA markers in these regions, we carried out a genome-wide association study (GWAS) of 120 China winter wheat accessions using single nucleotide polymorphism (SNP) markers from 90K wheat SNP arrays. In total, 16 SNP loci were significantly associated with wheat stripe rust in field and greenhouse trials. Of these, three distinctive SNPs on chromosomes 1B, 4A, and 6A were identified at a site in Mianyang in 2014, where the most prevalent wheat stripe rust races since 2009 have been V26 (G22-9, G22-14). This suggests that the three SNP loci were linked to the new quantitative trait loci (QTL)/genes resistant to the V26 races. Germplasm with immunity to Pst is a good source of stripe rust resistance for breeding, and after further validation, SNPs closely linked to resistance QTLs/genes could be converted into user-friendly markers and facilitate marker-assisted selection to improve wheat stripe rust resistance.


Euphytica ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Sanjaya Gyawali ◽  
Sujan Mamidi ◽  
Shiaoman Chao ◽  
Subhash C. Bhardwaj ◽  
Pradeep S. Shekhawat ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Mengjie Jia ◽  
Lijun Yang ◽  
Wei Zhang ◽  
Garry Rosewarne ◽  
Junhui Li ◽  
...  

Abstract Background Stripe rust (yellow rust) is a significant disease for bread wheat (Triticum aestivum L.) worldwide. A genome-wide association study was conducted on 240 Chinese wheat cultivars and elite lines genotyped with the wheat 90 K single nucleotide polymorphism (SNP) arrays to decipher the genetic architecture of stripe rust resistance in Chinese germplasm. Results Stripe rust resistance was evaluated at the adult plant stage in Pixian and Xindu in Sichuan province in the 2015–2016 cropping season, and in Wuhan in Hubei province in the 2013–2014, 2016–2017 and 2018–2019 cropping seasons. Twelve stable loci for stripe rust resistance were identified by GWAS using TASSEL and GAPIT software. These loci were distributed on chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 4B (3), 4D, 6D, and 7B and explained 3.6 to 10.3% of the phenotypic variation. Six of the loci corresponded with previously reported genes/QTLs, including Sr2/Yr30/Lr27, while the other six (QYr.hbaas-1BS, QYr.hbaas-2BL, QYr.hbaas-3AL, QYr.hbaas-4BL.3, QYr.hbaas-4DL, and QYr.hbaas-6DS) are probably novel. The results suggest high genetic diversity for stripe rust resistance in this population. The resistance alleles of QYr.hbaas-2AS, QYr.hbaas-3BS, QYr.hbaas-4DL, and QYr.hbaas-7BL were rare in the present panel, indicating their potential use in breeding for stripe rust resistance in China. Eleven penta-primer amplification refractory mutation system (PARMS) markers were developed from SNPs significantly associated with seven mapped QTLs. Twenty-seven genes were predicted for mapped QTLs. Six of them were considered as candidates for their high relative expression levels post-inoculation. Conclusion The resistant germplasm, mapped QTLs, and PARMS markers developed in this study are resources for enhancing stripe rust resistance in wheat breeding.


2007 ◽  
Vol 55 (6) ◽  
pp. 849-859 ◽  
Author(s):  
Parveen Chhuneja ◽  
Satinder Kaur ◽  
R. K. Goel ◽  
M. Aghaee-Sarbarzeh ◽  
M. Prashar ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (8) ◽  
pp. 2181-2192 ◽  
Author(s):  
Lu Liu ◽  
Meinan Wang ◽  
Zhiwu Zhang ◽  
Deven R. See ◽  
Xianming Chen

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a major threat to wheat production worldwide, especially in the United States. To identify loci for effective stripe rust resistance in U.S. wheat, a genome-wide association study (GWAS) was conducted using a panel of 616 spring wheat cultivars and breeding lines. The accessions in this panel were phenotyped for stripe rust response in the greenhouse at seedling stage with five predominant and highly virulent races of Pst and in different field environments at adult-plant stage in 2017 and 2018. In total, 2,029 single-nucleotide polymorphism markers that cover the whole genome were generated with genotyping by multiplexed sequencing and used in GWAS. In addition, 23 markers of previously reported resistance genes or quantitative trait loci (QTLs) were used to genotype the population. This spring panel was grouped into three subpopulations based on principal component analysis. A total of 37 genes or QTLs including 10 potentially new QTLs for resistance to stripe rust were detected by GWAS and linked marker tests. The frequencies of the resistance genes or QTLs in various nurseries were determined, indicating different intensities of these genes or QTLs used in breeding programs of different regions. These resistance loci and the information on their markers, effectiveness, and distributions should be useful for improving stripe rust resistance in wheat cultivars.


2020 ◽  
Author(s):  
Abou-Zeid A. Mohamed ◽  
Amira M. I. Mourad

Abstract Background: Wheat stripe rust (caused by Puccinia striiformis f. sp. Tritici), is a major disease that causes huge yield damage. New pathogen races appeared in the last few years and caused a broke down in the resistant genotypes. In Egypt, some of the resistant genotypes began to be susceptible to stripe rust in recent years. This situation increases the need to produce new genotypes with durable resistance. Besides, looking for a new resistant source from the available wheat genotypes all over the world help in enhancing the breeding programs. Results: In the recent study, a set of 103-spring wheat genotypes from different fourteen countries were evaluated to their field resistant to stripe rust for two years. These genotypes included 17 Egyptian genotypes from the old and new cultivars. The 103-spring wheat genotypes were reported to be well adapted to the Egyptian environmental conditions. Out of the tested genotypes, eight genotypes from four different countries were found to be resistant in both years. Genotyping was carried out using genotyping-by-sequencing and a set of 26,703 SNPs were used in the genome-wide association study. Five SNP markers, located on chromosomes 2A and 4A, were found to be significantly associated with the resistance in both years. Three gene models associated with disease resistance and underlying these significant SNPs were identified. One immune Iranian genotype, with the highest number of different alleles from the most resistant Egyptian genotypes, was detected. Conclusion: the high variation among the tested genotypes in their resistance to the Egyptian stripe rust race confirming the possible improvement of stripe rust resistance in the Egyptian wheat genotypes. The identified five SNP markers are stable and could be used in marker-assisted selection after validation in different genetic backgrounds. Crossing between the immune Iranian genotype and the Egyptian genotypes will improve stripe rust resistance in Egypt.


Sign in / Sign up

Export Citation Format

Share Document