scholarly journals THE IMPACT OF THE POLYMER COATING NUTRISPHERE™ IN INCREASING NITROGEN USE EFFICIENCY AND CORN YIELD

2014 ◽  
Vol 9 (1) ◽  
pp. 44-54 ◽  
Author(s):  
Heiniger
Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1081 ◽  
Author(s):  
Oladapo Adeyemi ◽  
Reza Keshavarz-Afshar ◽  
Emad Jahanzad ◽  
Martin Leonardo Battaglia ◽  
Yuan Luo ◽  
...  

Corn (Zea mays L.) grain is a major commodity crop in Illinois and its production largely relies on timely application of nitrogen (N) fertilizers. Currently, growers in Illinois and other neighboring states in the U.S. Midwest use the maximum return to N (MRTN) decision support system to predict corn N requirements. However, the current tool does not factor in implications of integrating cover crops into the rotation, which has recently gained attention among growers due to several ecosystem services associated with cover cropping. A two-year field trail was conducted at the Agronomy Research Center in Carbondale, IL in 2018 and 2019 to evaluate whether split N application affects nitrogen use efficiency (NUE) of corn with and without a wheat (Triticum aestivum L.) cover crop. A randomized complete block design with split plot arrangements and four replicates was used. Main plots were cover crop treatments (no cover crop (control) compared to a wheat cover crop) and subplots were N timing applications to the corn: (1) 168 kg N ha−1 at planting; (2) 56 kg N ha−1 at planting + 112 kg N ha−1 at sidedress; (3) 112 kg N ha−1 at planting + 56 kg N ha−1 at sidedress; and (4) 168 kg N ha−1 at sidedress along with a zero-N control as check plot. Corn yield was higher in 2018 than 2019 reflecting more timely precipitation in that year. In 2018, grain yield declined by 12.6% following the wheat cover crop compared to no cover crop control, indicating a yield penalty when corn was preceded with a wheat cover crop. In 2018, a year with timely and sufficient rainfall, there were no yield differences among N treatments and N balances were near zero. In 2019, delaying the N application improved NUE and corn grain yield due to excessive rainfall early in the season reflecting on N losses which was confirmed by lower N balances in sidedressed treatments. Overall, our findings suggest including N credit for cereals in MRTN prediction model could help with improved N management in the Midwestern United States.


2013 ◽  
Vol 126 ◽  
pp. 9-18 ◽  
Author(s):  
M. Gholamhoseini ◽  
M. AghaAlikhani ◽  
S.A.M. Modarres Sanavy ◽  
S.M. Mirlatifi

2019 ◽  
Vol 242 ◽  
pp. 107588 ◽  
Author(s):  
Jean-Pierre Cohan ◽  
Christine Le Souder ◽  
Coline Guicherd ◽  
Josiane Lorgeou ◽  
Philippe Du Cheyron ◽  
...  

Author(s):  
Yiman Jia ◽  
Zhengyi Hu ◽  
Yuxin Ba ◽  
Wenfang Qi

Abstract Background The use of biochar-based N fertilizers have been considered among the most effective strategy for reducing nitrogen loss and improving nitrogen use efficiency (NUE). However, effect and mechanism of biochar-coated urea (BCU) controlling the loss of nitrogen from soil and NUE are rarely reported. Methodology In this study, a 65-d culture pot experiment of oilseed rape was used to investigate the impact of BCU on nitrogen leaching, ammonia volatilization, soil nitrogen concentrations, soil pH, nitrogen uptake, NUE and oilseed rape biomass as compared with urea and urea combined with biochar at same nitrogen level. Results Results showed that the application of BCU could minimize nitrogen loss mainly by reducing nitrate leaching loss; which could be attributed to the slow-release performance of BCU, followed by biochar induced adsorption/fixation of nitrogen due to the porous nature and surface functional groups of biochar. However, the application of BCU enhanced ammonia volatilization due to the increase of soil NH4+–N concentration and pH value of microenvironment around urea by BCU. The application of BCU increased NUE by about 20% when compared with urea, since BCU reduced losses of nitrogen fertilizer and increased concentration of nitrogen in the soil as well as nitrogen uptake in oilseed rape. Furthermore, the reduction of nitrogen application by 20% when BCU served as a nitrogen source not only reduced nitrogen loss but significantly improved NUE, with no negative effect on the biomass of oilseed rape. Conclusion BCU can serve as a promising control release nitrogen fertilizer for reducing loss of nitrogen and increasing NUE. However further investigations are required to validate the dosage-effect relationship of BCU on crop yield at the field scale.


Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 662 ◽  
Author(s):  
Sakura D. Karunarathne ◽  
Yong Han ◽  
Xiao-Qi Zhang ◽  
Chengdao Li

Nitrogen (N) fertilization plays an important role in crop production; however, excessive and inefficient use of N fertilizer is a global issue that incurs high production costs, pollutes the environment and increases the emission of greenhouse gases. To overcome these negative consequences, improving nitrogen use efficiency (NUE) would be a key factor for profitable crop production either by increasing yield or reducing fertilizer cost. In contrast to soil and crop management practices, understanding the molecular mechanisms in NUE and developing new varieties with improved NUE is more environmentally and economically friendly. In this review, we highlight the recent progress in understanding and improving nitrogen use efficiency in barley, with perspectives on the impact of N on plant morphology and agronomic performance, NUE and its components such as N uptake and utilization, QTLs and candidate genes controlling NUE, and new strategies for NUE improvement.


2012 ◽  
Vol 92 (2) ◽  
pp. 341-351 ◽  
Author(s):  
Bernard Gagnon ◽  
Noura Ziadi ◽  
Cynthia Grant

Gagnon, B., Ziadi, N. and Grant, C. 2012. Urea fertilizer forms affect grain corn yield and nitrogen use efficiency. Can. J. Soil Sci. 92: 341–351. Controlled-release urea may be a good management strategy to increase the efficiency of N fertilizers. In a 3-yr study (2008–2010) conducted on a clay soil near Quebec City, Canada, we compared the effect of polymer-coated urea (PCU), nitrification inhibitor urea (NIU), dry urea and urea ammonium nitrate 32% (UAN) on corn yield, plant N accumulation and soil NO3-N remaining at harvest. Corn was fertilized with urea and PCU at 50, 100 and 150 kg N ha−1 in addition to an unfertilized control (0 N), and NIU and UAN at 150 kg N ha−1. Urea, PCU, and NIU were pre-plant broadcast whereas UAN was side-banded at the six-leaf stage of corn. Response to N fertilization occurred in all years, but the magnitude of the response varied with years. In wet years (2008 and 2009), PCU and NIU resulted in higher grain yield than urea, but the increase was greater for PCU (+0.8 to 1.6 Mg ha−1) than for NIU (+0.3 to 0.6 Mg ha−1). In a dry year (2010), no significant difference was found between urea, PCU and NIU. Yields and apparent N recovery were comparable for PCU and UAN except in the dry year, when plant N accumulation was much higher for the UAN treatment. At harvest, soil NO3-N was increased by PCU in all years. Economic analysis revealed that despite 30% higher cost, PCU gave comparable net returns at equivalent N rate than UAN in wet years. We conclude that controlled-release urea, particularly PCU, would be an additional option to farmers instead of sidedressed UAN application for fertilizing corn grown in eastern Canada.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2547
Author(s):  
Mohammad Mojibur Rahman ◽  
Shihab Uddin ◽  
Mohammad Mofizur Rahman Jahangir ◽  
Zakaria M. Solaiman ◽  
Saud Alamri ◽  
...  

Integrated Plant Nutrient System (IPNS) is practiced worldwide to maintain soil quality. Two field experiments were conducted in 2019 and 2020 in acidic and charland soils to assess the impact of different manures, viz., poultry manure (PM), vermicompost (VC), compost (OF), rice husk biochar (RHB), poultry manure biochar (PMB)-based IPNS, and dolomite over control on productivity and nitrogen use efficiency (NUE) of the Mustard-Boro-Transplanted Aman and Maize-Jute-Transplanted Aman cropping patterns, and on soil properties. The experiments were laid out in a randomized complete block design with four replications. The results showed that IPNS treatments significantly improved soil aggregate properties and total nitrogen in acidic soil, and bulk density in charland soil. In both years, IPNS treatments increased system productivity from 55.4 to 82.8% in acidic soil and from 43.3 to 115.4% in charland soil over that of control. IPNS and dolomite treatments increased nitrogen uptake from 35.5 to 105.7% over that of control and NUE in both soils in 2019 and 2020. PMB- and OF-based INPS treatments exhibited superior performances in both soils, and the impact was more prominent in 2020. Therefore, PMB- and OF-based IPNS can be recommended for maximizing system productivity and NUE with concurrent improvement of physicochemical properties of acidic and charland soils.


Sign in / Sign up

Export Citation Format

Share Document