In situ Shear Tests of Soil Samples with Grass Roots in Alpine Environment

2009 ◽  
Vol 5 (4) ◽  
pp. 474-485 ◽  
Author(s):  
E. Comino ◽  
A. Druetta
2020 ◽  
Vol 66 (No. 12) ◽  
pp. 632-638
Author(s):  
Senad Murtić ◽  
Emina Sijahović ◽  
Hamdija Čivić ◽  
Mirza Tvica ◽  
Josip Jurković

This study attempted to evaluate the efficiency of zeolite and pyrophyllite ore materials in reducing the mobility of heavy metals in soil near the lignite mining dumps, and consequently in their availability for plants. Extraction of pseudo-total and available forms of heavy metals from soil samples was performed by using aqua regia and ethylenediaminetetraacetic acid, respectively. Concentrations of heavy metals in soil and plant samples were determined by atomic absorption spectrophotometry. The results of this study illustrate that application of zeolite and pyrophyllite could be a suitable technique to reduce heavy metals availability in soils. Zeolite treatments have been shown to be significantly effective in reducing cadmium (Cd) mobility, as well as pyrophyllite treatments in reducing lead (Pb) mobility in the studied soil, regardless of applied rates. The accumulation of heavy metals in leaves of maize grown on soil plots treated by zeolite and pyrophyllite, was found to be lower compared to the untreated plots. This finding was to be expected, considering the effects of these treatments on heavy metals mobility in the studied soil.


The Holocene ◽  
2017 ◽  
Vol 27 (9) ◽  
pp. 1273-1280
Author(s):  
Klement Rejšek ◽  
Jan Turek ◽  
Valerie Vranová ◽  
Roman Hadacz ◽  
Lenka Lisá

This paper deals with a possible interpretation value of biochemical methods in comparison with the classic tools of geoarchaeology for the evaluation of formation processes. Organic rich layers from the archaeological site Brandýs nad Labem-Vrábí were tested with the aim to determine the origin of several different types of soil organic material by analyzing the content of different sugars. The studied soil body showed signs of cultural layer, redeposited soils, and in situ developed soil. The analysis of different sugars was highlighted: soil samples taken from these layers were analyzed to assess the ratios of mannose + galactose to arabinose + xylose, and of rhamnose + fucose to arabinose + xylose, content of Corg and different nitrates, as well as different rates of absorbance. The results show that the interpretation values of polysaccharides evaluation didn’t bring significant results itself, but in combination with classical tools of geoarchaeology may bring interpretable and new results.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2626 ◽  
Author(s):  
Chao Chen ◽  
Xiaofei Yan ◽  
Qiang Xu ◽  
Song Yu ◽  
Yihan Ma ◽  
...  

Soil matric potential is an important parameter for agricultural and environmental research and applications. In this study, we developed a novel sensor to determine fast and in-situ the soil matric potential. The probe of the soil matric potential sensor comprises a perforated coaxial stainless steel cylinder filled with a porous material (gypsum). With a pre-determined gypsum water retention curve, the probe can determine the gypsum matric potential through measuring its water content. The matric potential of soil surrounding the probe is inferred by the reading of the sensor after the soil reaches a hydraulic equilibrium with the gypsum. The sensor was calibrated by determining the gypsum water retention curve using a pressure plate method and tested in three soil samples with different textures. The results showed that the novel sensor can determine the water retention curves of the three soil samples from saturated to dry when combined with a soil water content sensor. The novel sensor can respond fast to the changes of the soil matric potential due to its small volume. Future research could explore the application for agriculture field crop irrigation.


2011 ◽  
Vol 51 (1) ◽  
pp. 487 ◽  
Author(s):  
Mohammad Sadegh Asadi ◽  
Vamegh Rasouli

Fault reactivation is an unfavourable incident during drilling and production that may occur due to changes in situ stresses and reservoir pressure. Only a few studies, in their analyses, have included the effects of fault geometrical properties—these are important parameters controlling fault slippage and damage around it. In this paper, the significant influence of fracture morphology on the mechanical behaviour of rock fractures was investigated through experimental studies of shearing rock fractures in the lab. The experiments carried out using a fracture shear cell (FSC): the cell that was modified by adding a number of components to an existing true triaxial stress cell (TTSC) and designing a duplex high pressure cylinder that is capable of applying large normal stresses to the sample at a constant rate. A number of artificial blocks made of mortar material were subjected to shear tests using FSC under a wide range of normal stresses and at different shearing directions. The outputs of uniaxial compressive strength and fracture shear tests in the lab were used to plot the failure envelope of the fractured rock mass and discuss the failure mechanism through shearing. Accordingly, a calibrated, numerical discrete element method (DEM) was used to simulate the shear behaviour of fractures previously tested in the lab. The results of lab tests and DEM simulations will be presented and different failure mechanisms that are expected during shearing will be explained. The results show the significant influence of surface roughness on shear strength and extent of damage zone along the fracture. It was found that the shearing response of fractures depends on the magnitude of normal stress, which indicates the importance of having a good knowledge of in-situ stresses when modelling fault reactivation and damage near the fault zones. The results of lab experiments and numerical simulations were compared and good agreements were observed.


1953 ◽  
Vol 45 (4) ◽  
pp. 173-173
Author(s):  
H. J. Haas ◽  
G. A. Rogler
Keyword(s):  

2019 ◽  
Vol 13 (1) ◽  
pp. 39-53
Author(s):  
Tianwu Ma ◽  
Tengfei Wei ◽  
Cheng-Zhi Qin ◽  
A-Xing Zhu ◽  
Feng Qi ◽  
...  

Soil Research ◽  
1992 ◽  
Vol 30 (4) ◽  
pp. 477 ◽  
Author(s):  
J Sierra

An investigation of in situ N mineralization, using undisturbed soil samples, indicated a negative relationship between the mineral N content [(NO3+NH4)-N] at the beginning of the experiment and the mineral N produced during it. This suggests that a maximum value of mineral N accumulation in intact soil cores could be calculated from the relationship between mineral N content and N mineralization rate. This value would be related to the size of the mineralizable N pool. If this hypothesis is true, the amount of mineralizable N could be estimated from in situ incubations and utilized in the modelling of N mineralization in the field. The aim of this work was to verify this hypothesis. The relationship between the mineral N content and the N mineralization rate was analysed for in situ and laboratory incubations of disturbed and undisturbed soil samples. A negative relationship between the two variables was only obtained for the experiments carried out with undisturbed samples (in the field and laboratory incubations) when the soil moisture content was not limiting for N mineralization. Futhermore, in undisturbed samples, a negative relationship between mineralization rates of consecutive incubation periods was observed, i.e. the soil sample producing relatively more, during a given period, produced relatively less in the following period. This relationship suggests a feedback mechanism operating in N mineralization which would be related to a mineralization-immobilization process in soil microsites. Thus, the N mineralization pattern was more complex than that described by initial hypothesis. The possible consequence of this feedback mechanism on in situ N dynamics is discussed.


Sign in / Sign up

Export Citation Format

Share Document