In-situ recommendation of alternative soil samples during field sampling based on environmental similarity

2019 ◽  
Vol 13 (1) ◽  
pp. 39-53
Author(s):  
Tianwu Ma ◽  
Tengfei Wei ◽  
Cheng-Zhi Qin ◽  
A-Xing Zhu ◽  
Feng Qi ◽  
...  
2020 ◽  
Vol 66 (No. 12) ◽  
pp. 632-638
Author(s):  
Senad Murtić ◽  
Emina Sijahović ◽  
Hamdija Čivić ◽  
Mirza Tvica ◽  
Josip Jurković

This study attempted to evaluate the efficiency of zeolite and pyrophyllite ore materials in reducing the mobility of heavy metals in soil near the lignite mining dumps, and consequently in their availability for plants. Extraction of pseudo-total and available forms of heavy metals from soil samples was performed by using aqua regia and ethylenediaminetetraacetic acid, respectively. Concentrations of heavy metals in soil and plant samples were determined by atomic absorption spectrophotometry. The results of this study illustrate that application of zeolite and pyrophyllite could be a suitable technique to reduce heavy metals availability in soils. Zeolite treatments have been shown to be significantly effective in reducing cadmium (Cd) mobility, as well as pyrophyllite treatments in reducing lead (Pb) mobility in the studied soil, regardless of applied rates. The accumulation of heavy metals in leaves of maize grown on soil plots treated by zeolite and pyrophyllite, was found to be lower compared to the untreated plots. This finding was to be expected, considering the effects of these treatments on heavy metals mobility in the studied soil.


The Holocene ◽  
2017 ◽  
Vol 27 (9) ◽  
pp. 1273-1280
Author(s):  
Klement Rejšek ◽  
Jan Turek ◽  
Valerie Vranová ◽  
Roman Hadacz ◽  
Lenka Lisá

This paper deals with a possible interpretation value of biochemical methods in comparison with the classic tools of geoarchaeology for the evaluation of formation processes. Organic rich layers from the archaeological site Brandýs nad Labem-Vrábí were tested with the aim to determine the origin of several different types of soil organic material by analyzing the content of different sugars. The studied soil body showed signs of cultural layer, redeposited soils, and in situ developed soil. The analysis of different sugars was highlighted: soil samples taken from these layers were analyzed to assess the ratios of mannose + galactose to arabinose + xylose, and of rhamnose + fucose to arabinose + xylose, content of Corg and different nitrates, as well as different rates of absorbance. The results show that the interpretation values of polysaccharides evaluation didn’t bring significant results itself, but in combination with classical tools of geoarchaeology may bring interpretable and new results.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2626 ◽  
Author(s):  
Chao Chen ◽  
Xiaofei Yan ◽  
Qiang Xu ◽  
Song Yu ◽  
Yihan Ma ◽  
...  

Soil matric potential is an important parameter for agricultural and environmental research and applications. In this study, we developed a novel sensor to determine fast and in-situ the soil matric potential. The probe of the soil matric potential sensor comprises a perforated coaxial stainless steel cylinder filled with a porous material (gypsum). With a pre-determined gypsum water retention curve, the probe can determine the gypsum matric potential through measuring its water content. The matric potential of soil surrounding the probe is inferred by the reading of the sensor after the soil reaches a hydraulic equilibrium with the gypsum. The sensor was calibrated by determining the gypsum water retention curve using a pressure plate method and tested in three soil samples with different textures. The results showed that the novel sensor can determine the water retention curves of the three soil samples from saturated to dry when combined with a soil water content sensor. The novel sensor can respond fast to the changes of the soil matric potential due to its small volume. Future research could explore the application for agriculture field crop irrigation.


Soil Research ◽  
1992 ◽  
Vol 30 (4) ◽  
pp. 477 ◽  
Author(s):  
J Sierra

An investigation of in situ N mineralization, using undisturbed soil samples, indicated a negative relationship between the mineral N content [(NO3+NH4)-N] at the beginning of the experiment and the mineral N produced during it. This suggests that a maximum value of mineral N accumulation in intact soil cores could be calculated from the relationship between mineral N content and N mineralization rate. This value would be related to the size of the mineralizable N pool. If this hypothesis is true, the amount of mineralizable N could be estimated from in situ incubations and utilized in the modelling of N mineralization in the field. The aim of this work was to verify this hypothesis. The relationship between the mineral N content and the N mineralization rate was analysed for in situ and laboratory incubations of disturbed and undisturbed soil samples. A negative relationship between the two variables was only obtained for the experiments carried out with undisturbed samples (in the field and laboratory incubations) when the soil moisture content was not limiting for N mineralization. Futhermore, in undisturbed samples, a negative relationship between mineralization rates of consecutive incubation periods was observed, i.e. the soil sample producing relatively more, during a given period, produced relatively less in the following period. This relationship suggests a feedback mechanism operating in N mineralization which would be related to a mineralization-immobilization process in soil microsites. Thus, the N mineralization pattern was more complex than that described by initial hypothesis. The possible consequence of this feedback mechanism on in situ N dynamics is discussed.


2010 ◽  
Vol 76 (7) ◽  
pp. 2218-2224 ◽  
Author(s):  
Zhi Zhou ◽  
Lutgarde Raskin ◽  
Julie L. Zilles

ABSTRACT Current agricultural practices involve inclusion of antimicrobials in animal feed and result in manure containing antimicrobials and antimicrobial-resistant microorganisms. This work evaluated the effects of land application of swine manure on the levels of tetracycline, macrolide, and lincosamide antimicrobials and on macrolide, lincosamide, and streptogramin B (MLSB) resistance in field soil samples and laboratory soil batch tests. MLSB and tetracycline antimicrobials were quantified after solid-phase extraction using liquid chromatography-tandem mass spectrometry. The prevalence of the ribosomal modification responsible for MLSB resistance in the same samples was quantified using fluorescence in situ hybridization. Macrolide antimicrobials were not detected in soil samples, while tetracyclines were detected, suggesting that the latter compounds persist in soil. No significant differences in ribosomal methylation or presumed MLSB resistance were observed when amended and unamended field soils were compared, although a transient (<20-day) increase was observed in most batch tests. Clostridium cluster XIVa accounted for the largest fraction of resistant bacteria identified in amended soils. Overall, this study did not detect a persistent increase in the prevalence of MLSB resistance due to land application of treated swine manure.


2021 ◽  
Vol 14 (2) ◽  
pp. 56-65
Author(s):  
V. P. Ramzaev ◽  
A. N. Barkovsky ◽  
A. A. Bratilova

The collection of representative soil samples in the territory of settlements and subsequent measurements of the content of radionuclides in these samples under laboratory conditions (the so-called “ex situ method”) is a generally accepted technology for determining the density of soil contamination with 137Cs in the populated areas contaminated due to the Chernobyl accident. Recently, as a supplement or alternative to the ex situ method, researchers are developing field (in situ) gamma-spectrometry methods. These methods allow determining the density of soil contamination with 137Cs directly on site, without soil sampling and laboratory analysis. At the same time, the in situ methodology has several limitations, the most important of which is a lack of generally recognized metrological basis for measurements and interpretation of results. Hence, before using a particular technique and measuring device for carrying out large-scale in situ measurements, it is necessary to validate (to assess the suitability) of the selected in situ method using an established ex situ method. The aim of this study was to validate the method for determining the density of 137Cs soil contamination in kitchen gardens using the MKS AT6101D spectrometer-dosimeter in situ. The method was recently presented by a Russian-Swedish-Belarusian group of researchers in an article published in the Journal of Environmental Radioactivity (https://doi.org/10.1016/j.jenvrad.2021.106562). To validate this method, we selected 10 representative kitchen garden plots. The plots were located in six settlements of the Bryansk region in Russia. The territory of the settlements had been heavily contaminated with 137Cs as a result of the Chernobyl accident: the officially established levels of the density of soil contamination by 137Cs ranged from 111 to 511 kBq/m2 in 2017. Field gamma-ray spectra were recorded at a height of 1 m above the ground in the center of kitchen garden plots using the MKS AT6101D device. The measurement duration was in the range of 1207–1801 s (the mean value = 1383 s). Samples of soil in the kitchen gardens were taken layer by layer (with a step of 5 cm) to a depth of 20 cm using a demountable cylindrical sampler. The 137Cs content in each soil layer was determined in the laboratory using a stationary semiconductor gamma spectrometer. The values of the 137Cs contamination density of the sampled soils ranged from 77 to 548 kBq/m2. It was found that the results of the ex situ analyzes of soil samples were in a good agreement with the contamination density values obtained with the in situ method. On average, the difference between two methodologies was 7% (a maximum of 20%). The results of the study confirm that the method proposed by the international group is suitable for determining the density of soil contamination by 137Cs in kitchen gardens in remote period after the Chernobyl accident.


2015 ◽  
Vol 11 (2) ◽  
pp. 152-157 ◽  
Author(s):  
Roman Bulko ◽  
Marián Drusa ◽  
Jozef Vlček ◽  
Martin Mečár

Abstract Currently, can be seen a new trend in engineering geological survey, where laboratory analysis are replaced by in situ testing methods, which are more efficient and cost effective, and time saving too. A regular engineering geological survey cannot be provided by simple core drillings, macroscopic description (sometimes very subjective), and then geotechnical parameters are established based on indicative standardized values or archive values from previous geotechnical standards. The engineering geological survey is trustworthy if is composed of laboratory and in-situ testing supplemented by indirect methods of testing, [1]. The prevalence of rotary core drilling for obtaining laboratory soil samples from various depths (every 1 to 3 m), cannot be a more enhanced as continues evaluation of strata and properties e.g. by CPT Piezocone (every 1 cm). Core drillings survey generally uses small amounts of soil samples, but this is resulting to a lower representation of the subsoil and underestimation of parameters. Higher amounts of soil samples make laboratory testing time-consuming and results from this testing can be influenced by the storage and processing of the soil samples. Preference for geotechnical surveys with in situ testing is therefore a more suitable option. In situ testing using static and dynamic penetration tests can be used as a supplement or as a replacement for the (traditional) methods of surveying.


2014 ◽  
Vol 38 (6) ◽  
pp. 1772-1783
Author(s):  
Wagner Henrique Moreira ◽  
Cássio Antônio Tormena ◽  
Edner Betioli Junior ◽  
Getulio Coutinho Figueiredo ◽  
Álvaro Pires da Silva ◽  
...  

The least limiting water range (LLWR) has been used as an indicator of soil physical quality as it represents, in a single parameter, the soil physical properties directly linked to plant growth, with the exception of temperature. The usual procedure for obtaining the LLWR involves determination of the water retention curve (WRC) and the soil resistance to penetration curve (SRC) in soil samples with undisturbed structure in the laboratory. Determination of the WRC and SRC using field measurements (in situ ) is preferable, but requires appropriate instrumentation. The objective of this study was to determine the LLWR from the data collected for determination of WRC and SRC in situ using portable electronic instruments, and to compare those determinations with the ones made in the laboratory. Samples were taken from the 0.0-0.1 m layer of a Latossolo Vermelho distrófico (Oxisol). Two methods were used for quantification of the LLWR: the traditional, with measurements made in soil samples with undisturbed structure; and in situ , with measurements of water content (θ), soil water potential (Ψ), and soil resistance to penetration (SR) through the use of sensors. The in situ measurements of θ, Ψ and SR were taken over a period of four days of soil drying. At the same time, samples with undisturbed structure were collected for determination of bulk density (BD). Due to the limitations of measurement of Ψ by tensiometer, additional determinations of θ were made with a psychrometer (in the laboratory) at the Ψ of -1500 kPa. The results show that it is possible to determine the LLWR by the θ, Ψ and SR measurements using the suggested approach and instrumentation. The quality of fit of the SRC was similar in both strategies. In contrast, the θ and Ψ in situ measurements, associated with those measured with a psychrometer, produced a better WRC description. The estimates of the LLWR were similar in both methodological strategies. The quantification of LLWR in situ can be achieved in 10 % of the time required for the traditional method.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Birthe V. Kjellerup ◽  
Piuly Paul ◽  
Upal Ghosh ◽  
Harold D. May ◽  
Kevin R. Sowers

Soil samples contaminated with Aroclor 1260 were analyzed for microbial PCB dechlorination potential, which is the rate-limiting step for complete PCB degradation. The average chlorines per biphenyl varied throughout the site suggesting that different rates ofin situdechlorination had occurred over time. Analysis of PCB transforming (aerobic and anaerobic) microbial communities and dechlorinating potential revealed spatial heterogeneity of both putative PCB transforming phylotypes and dechlorination activity. Some soil samples inhibited PCB dechlorination in active sediment from Baltimore Harbor indicating that metal or organic cocontaminants might cause the observed heterogeneity ofin situdechlorination. Bioaugmentation of soil samples contaminated with PCBs ranging from 4.6 to 265 ppm with a pure culture of the PCB dechlorinating bacteriumDehalobium chlorocoerciaDF-1 also yielded heterologous results with significant dechlorination of weathered PCBs observed in one location. The detection of indigenous PCB dehalorespiring activity combined with the detection of putative dechlorinating bacteria and biphenyl dioxygenase genes in the soil aggregates suggests that the potential exists for complete mineralization of PCBs in soils. However, in contrast to sediments, the heterologous distribution of microorganisms, PCBs, and inhibitory cocontaminants is a significant challenge for the development ofin situmicrobial treatment of PCB impacted soils.


Sign in / Sign up

Export Citation Format

Share Document