scholarly journals DETERMINISTIC CHAOS VERSUS STOCHASTIC OSCILLATION IN A PREY-PREDATOR-TOP PREDATOR MODEL

2011 ◽  
Vol 16 (3) ◽  
pp. 343-364 ◽  
Author(s):  
Ranjit Kumar Upadhyay ◽  
Malay Banerjee ◽  
Rana Parshad ◽  
Sharada Nandan Raw

The main objective of the present paper is to consider the dynamical analysis of a three dimensional prey-predator model within deterministic environment and the influence of environmental driving forces on the dynamics of the model system. For the deterministic model we have obtained the local asymptotic stability criteria of various equilibrium points and derived the condition for the existence of small amplitude periodic solution bifurcating from interior equilibrium point through Hopf bifurcation. We have obtained the parametric domain within which the model system exhibit chaotic oscillation and determined the route to chaos. Finally, we have shown that chaotic oscillation disappears in presence of environmental driving forces which actually affect the deterministic growth rates. These driving forces are unable to drive the system from a regime of deterministic chaos towards a stochastically stable situation. The stochastic stability results are discussed in terms of the stability of first and second order moments. Exhaustive numerical simulations are carried out to validate the analytical findings.

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Banshidhar Sahoo

We have proposed a nutrient-consumer-predator model with additional food to predator, at variable nutrient enrichment levels. The boundedness property and the conditions for local stability of boundary and interior equilibrium points of the system are derived. Bifurcation analysis is done with respect to quality and quantity of additional food and consumer’s death rate for the model. The system has stable as well as unstable dynamics depending on supply of additional food to predator. This model shows that supply of additional food plays an important role in the biological controllability of the system.


2006 ◽  
Vol 14 (02) ◽  
pp. 205-217 ◽  
Author(s):  
MALAY BANDYOPADHYAY

In this paper we have considered a two-species competitive phytoplankton system with one toxin producing phytoplankton. Local asymptotic stability of various equilibrium points are considered to understand the effect of toxic substance on the dynamics of the model system. By using a suitable Lyapunov function we have observed that the toxic substance has some stabilizing effect on the dynamics of model system.


Author(s):  
Nurul Huda Gazi ◽  
Malay Bandyopadhyay

Models of detritus-based ecosystems with delay have received a great deal of attention for the last few decades. This paper deals with the dynamical analysis of a nonlinear model of a detritus-based ecosystem involving detritivores and predator of detritivores. We have obtained the criteria for local stability of various equilibrium points and persistence of the model system. Next, we have introduced discrete time delay due to recycling of dead organic matters and gestation of nutrients to the growth equations of various trophic levels. With delay differential equation model system we have studied the effect of time delay on the stability behaviour. Next, we have obtained an estimate for the length of time delay to preserve the stability of the model system. Finally, the existence of Hopf-bifurcating small amplitude periodic solutions is derived by considering time delay as a bifurcation parameter.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Raid Kamel Naji ◽  
Salam Jasim Majeed

We proposed and analyzed a mathematical model dealing with two species of prey-predator system. It is assumed that the prey is a stage structure population consisting of two compartments known as immature prey and mature prey. It has a refuge capability as a defensive property against the predation. The existence, uniqueness, and boundedness of the solution of the proposed model are discussed. All the feasible equilibrium points are determined. The local and global stability analysis of them are investigated. The occurrence of local bifurcation (such as saddle node, transcritical, and pitchfork) near each of the equilibrium points is studied. Finally, numerical simulations are given to support the analytic results.


2016 ◽  
Vol 21 (3) ◽  
pp. 345-361 ◽  
Author(s):  
Shyam Pada Bera ◽  
Alakes Maiti ◽  
Guruprasad Samanta

In nature, a number of populations live in groups. As a result when predators attack such a population the interaction occur only at the outer surface of the herd. Again, every model in biology, being concerned with a subsystem of the real world, should include the effect of random fluctuating environment. In this paper, we study a prey–predator model in deterministic and stochastic environment. The social activity of the prey population has been incorporated by using the square root of prey density in the functional response. A brief analysis of the deterministic model including the stability of equilibrium points is presented. In random environment, the birth rate of prey species and death rate of predator species are perturbed by Gaussian white noises. We have used the method of statistical linearization to study the stability and non-equilibrium fluctuation of the populations in stochastic model. Numerical computations carried out to illustrate the analytical findings. The biological implications of analytical and numerical findings are discussed critically.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Subhashis Das ◽  
◽  
Sanat Mahato ◽  
Prasenjit Mahato

The growing relationship between prey and their predator is one of the important aspects in the field of ecology and mathematical biology. On the other hand, the utility of fractional calculus in different types of mathematical modelling have been applied extensively. In this paper, a fractional order prey–predator model is developed with the consideration of Holling type-I and Holling type-II functional response of the predator. As infection spreads through prey, the prey population is divided into two parts. In addition, we exploit the effect of harvesting to control the excessive spread of the infection. The existence and uniqueness criteria, the boundedness of the solution of the proposed model are investigated. A number of five possible equilibrium points of the proposed model are determined along with the feasibility conditions for each equilibrium points. The local stability at these equilibrium points and global stability at interior equilibrium point are investigated. Numerical simulation is presented with the help of modified Predictor-corrector method in MATLAB software to understand the dynamics of the proposed model.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Yi Zhang ◽  
Qingling Zhang ◽  
Fenglan Bai

A prey-predator model with gestation delay, stage structure for predator, and selective harvesting effort on mature predator is proposed, where taxation is considered as a control instrument to protect the population resource in prey-predator biosystem from overexploitation. It shows that interior equilibrium is locally asymptotically stable when the gestation delay is zero, and there is no periodic orbit within the interior of the first quadrant of state space around the interior equilibrium. An optimal harvesting policy can be obtained by virtue of Pontryagin's Maximum Principle without considering gestation delay; on the other hand, the interior equilibrium of model system loses as gestation delay increases through critical certain threshold, a phenomenon of Hopf bifurcation occurs, and a stable limit cycle corresponding to the periodic solution of model system is also observed. Finally, numerical simulations are carried out to show consistency with theoretical analysis.


Author(s):  
Agus Suryanto ◽  
Isnani Darti

We propose a model which describes the interaction between pest and its natural predator. We assume that pest can be infected with diseases or pathogens such as bacteria, fungi, and viruses. The model is constructed by combining the Leslie-Gower model and S-I epidemic model. It is also considered the effects of pest harvesting. Harvesting in this case is intended to take a number of pests as one of the pest population control strategies. The proposed model will be analyzed dynamically to study its qualitative behaviour. The dynamical analysis includes the determination of all possible equilibrium points and their stability properties. Furthermore we also discuss the implementation of pesticide control where its optimal strategy is determined by Pontryagin’s maximum principle. To support our analytical studies, we perform some numerical simulations and their interpretation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Noor S. Sh. Barhoom ◽  
Sadiq Al-Nassir

In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynamics of our proposed model.


2014 ◽  
Vol 24 (11) ◽  
pp. 1450136 ◽  
Author(s):  
Alexander P. Krishchenko ◽  
Konstantin E. Starkov

In this paper, we examine the localization problem of compact invariant sets of Raychaudhuri equations with nonzero parameters. The main attention is attracted to the localization of periodic/homoclinic orbits and homoclinic cycles: we prove that there are neither periodic/homoclinic orbits nor homoclinic cycles; we find heteroclinic orbits connecting distinct equilibrium points. We describe some unbounded domain such that nonescaping to infinity positive semitrajectories which are contained in this domain have the omega-limit set located in the boundary of this domain. We find a locus of other types of compact invariant sets respecting three-dimensional and two-dimensional invariant planes. Besides, we describe the phase portrait of the system obtained from the Raychaudhuri equations by the restriction on the two-dimensional invariant plane.


Sign in / Sign up

Export Citation Format

Share Document