scholarly journals THE INFLUENCE OF TURPENTINE ADDITIVE ON THE ECOLOGICAL PARAMETERS OF DIESEL ENGINES

Transport ◽  
2007 ◽  
Vol 22 (2) ◽  
pp. 80-82 ◽  
Author(s):  
Algis Butkus ◽  
Saugirdas Pukalskas ◽  
Zenonas Bogdanovičius

After Lithuania's accession to the EU it is very important to use a larger amount of renewable fuel. Based on economic and environmental considerations in Lithuania, we are interested in studying the effects of turpentine contents in the blended turpentine‐diesel fuel on the engine performance and pollutant emission of compression ignition (CI) engine. Therefore, we used engine test facilities to investigate the effects on the engine performance and pollutant emission of 5 % turpentine in the fuel blend. The tests were carried out in the laboratory on an engine dynamometer of the car Audi 1Z and tractor D21 diesel engines. The experimental results showed that turpentine used in the fuel blend for these diesel engines had a positive influence on the engine performance and exhaust emission.

Transport ◽  
2004 ◽  
Vol 19 (1) ◽  
pp. 24-27 ◽  
Author(s):  
Algis Butkus ◽  
Saugirdas Pukalskas

Looking forward to Lithuania becoming a member of the EU it is very important to use a larger amount of renewing fuel. Based on economic and environmental considerations in Lithuania, we are interested in studying the effects of ethanol contents in the blended ethanol‐petrol fuel on the engine performance and pollutant emission of SI engine. Therefore, we used engine test facilities to investigate the effects on the engine performance and pollutant emission of 3,5 % and 7,0 % ethanol in the fuel blend and special additives, which reduce emissions and increase octane rating. The tests were carried out in the laboratory on a chassis dynamometer with two different cars. The experiment results showed that ethanol used in a fuel blend with petrol had a positive influence on engine performance and exhaust emission.


2014 ◽  
Vol 699 ◽  
pp. 648-653 ◽  
Author(s):  
Bahaaddein K.M. Mahgoub ◽  
Suhaimi Hassan ◽  
Shaharin Anwar Sulaiman

In this review, a series of research papers on the effects of hydrogen and carbon monoxide content in syngas composition on the performance and exhaust emission of compression ignition diesel engines, were compiled. Generally, the use of syngas in compression ignition (CI) diesel engine leads to reduce power output due to lower heating value when compared to pure liquid diesel mode. Therefore, variation in syngas composition, especially hydrogen and carbon monoxide (Combustible gases), is suggested to know the appropriate syngas composition. Furthermore, the simulated model of syngas will help to further explore the detailed effects of engine parameters on the combustion process including the ignition delay, combustion duration, heat release rate and combustion phasing. This will also contribute towards the efforts of improvement in performance and reduction in pollutants’ emissions from CI diesel engines running on syngas at dual fuel mode. Generally, the database of syngas composition is not fully developed and there is still room to find the optimum H2 and CO ratio for performance, emission and diesel displacement of CI diesel engines.


2018 ◽  
Author(s):  
Adriaan Smuts Van Niekerk ◽  
Benjamin Drew ◽  
Neil Larsen ◽  
Peter Kay

To reduce the amount of carbon dioxide released from transportation the EU has implemented legislation to mandate the renewable content of petrol and diesel fuels. However, due to the complexity of the combustion process the addition of renewable content, such as biodiesel and ethanol, can have a detrimental effect on other engine emissions. In particular the engine load can have a significant impact on the emissions. Most research that have studied this issue are based on steady state tests, that are unrealistic of real world driving and will not capture the difference between full and part loads. This study aims to address this by investigating the effect of renewable fuel blends of diesel, biodiesel and ethanol on the emissions of a compression ignition engine tested over the World Harmonised Light Vehicle Test Procedure (WLTP). Diesel, biodiesel and ethanol were blended to form binary and ternary blends, the ratios were determined by Design of Experiments (DoE). The total amount of emissions for CO, CO2 and NOx as well as the fuel consumption, were measured from a 2.4 liter compression ignition (CI) engine running over the WLTP drive cycle. The results depicted that percentages smaller than 10 % of ethanol in the fuel blend can reduce CO emissions, CO2 emissions as well as NOx emissions, but increases fuel consumption with increasing percentage of ethanol in the fuel blend. Blends with biodiesel resulted in minor increases in CO emissions due to the engine being operated in the low and medium load regions over the WLTP. CO2 emissions as well as NOx emissions increased as a result of the high oxygen content in biodiesel which promoted better combustion. Fuel consumption increased for blends with biodiesel as a result from biodiesel's lower heating value. All the statistical models describing the engine responses were significant and this demonstrated that a mixture DoE is suitable to quantify the effect of fuel blends on an engine's emissions response. An optimised ternary blend of B2E9 was found to be suitable as a 'drop in' fuel that will reduce harmful emissions of CO emissions by approximately 34 %, NOx emissions by 10 % and CO2 emissions by 21 % for transient engine operating scenarios such as the WLTP drive cycle.


2018 ◽  
Vol 25 (16) ◽  
pp. 15307-15325 ◽  
Author(s):  
Natalina Damanik ◽  
Hwai Chyuan Ong ◽  
Chong Wen Tong ◽  
Teuku Meurah Indra Mahlia ◽  
Arridina Susan Silitonga

Author(s):  
Amir Ridhuan ◽  
Shahrul Azmir Osman ◽  
Mas Fawzi ◽  
Ahmad Jais Alimin ◽  
Saliza Azlina Osman

This introductory study comes up with an innovative idea of using Hydroxyl gas as a fuel performance enhancer to reduce the natural sources and the overuse of fossil fuel resulting in increased pollution levels. Many researchers have used HHO gas to analyze gasoline and diesel in internal combustion engines. The main challenges of using HHO gas in engines have been identified as system complexity, safety, cost, and electrolysis efficiency. This article focuses on different performance reports and the emission characteristics of a compression ignition engine. As opposed to general diesel, this study found that using HHO gas improved brake power and torque. In all cases, an increase in braking thermal efficiency can be observed. This was due to the presence of hydrogen in HHO gas with higher calorific value than fossil fuels. At the same time, the fuel consumption unit of the engine was reduced, and the combined impact of hydrogen and oxygen helped to achieve complete combustion and improved the combustion capacity of the fuel when HHO gas was injected. The addition of HHO gas also improved the Brake Power (BP), Brake Torque (BT), Brake Specific Fuel Consumption (BSFC), and thermal efficiency while simultaneously reducing CO and HC formation. The rise in CO2 emissions represented the completion of combustion. Therefore, the usage of HHO gas in the Compression Ignition (CI) engine improved the engine performance and exhaust emissions.


2021 ◽  
Author(s):  
Mohan Das Akkur Neele Gowda ◽  
Hanumanahalli Kambadarangappa Shivanand ◽  
Harish Gangaiah ◽  
Bhaskar Hindisigere Bytarangaiah ◽  
Jagannatha Tumkur Doddaiah ◽  
...  

Abstract The present investigation is carried out on biodiesel practicability over the existing non-renewable fuel due to its environmental dilapidation effect and oil crisis. Biodiesel was extracted from crude oil by transesterification, and its properties have been compared with those of neat diesel according to ASTM standards. Then, the blends of biodiesel are prepared for experimental analysis. Experimental results from our previous research study, the best blend was optimized. Then, the standard CI engine with Hemispherical Piston Bowl Geometry (HPBG) is modified to Toroidal or Split type Piston Bowl Geometry (TPBG) and Re-Entrant Piston Bowl Geometry (RPBG). Experimental works were carried out for preheated optimized blend, neat diesel with modified Piston Bowl Geometries. The engine characteristics results were compared with these altered conditions. The modified PBG with preheated biodiesel blend resulted in better Performance and Combustion characteristics. The preheated biodiesel blends indicated significant depletion in the emission of harmful particulate matter such as CO, NOx, and unburnt Hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document