scholarly journals Formulating alcohol-influenced driver’s injury severities in intersection-related crashes

Transport ◽  
2016 ◽  
Vol 33 (1) ◽  
pp. 165-176 ◽  
Author(s):  
Qiong Wu ◽  
Guohui Zhang

Approximately one third of all traffic fatal crashes are alcohol-related in the US according to the National Highway Traffic Safety Administration (NHTSA), alcohol-related crashes cost more than $37 billion annually. Considerable research efforts are needed to understand better significant causal factors for alcohol-related crash risks and driver’s injury severities in order to develop effective countermeasures and proper policies for system-wide traffic safety performance improvements. Furthermore, since two thirds of urban Vehicle Miles Traveled (VMT) is on signal-controlled roadways, it is of practical importance to investigate injury severities of all drivers who are involved in intersection-related crashes and their corresponding significant causal factors due to control and geometric impacts on flow progression interruptions. This study aims to identify and quantify the impacts of alcohol/non-alcohol-influenced driver’s behavior and demographic features as well as geometric and environmental characteristics on driver’s injury severities around intersections in New Mexico. The econometric models, multinomial Logit models, were developed to analyze injury severities for regular sober drivers and alcohol-influenced drivers, respectively, using the crash data collected in New Mexico from 2010 to 2011. Elasticity analyzes were conducted in order to understand better the quantitative impacts of these contributing factors on driver’s injury outcomes. The research findings provide a better understanding of contributing factors and their impacts on driver injury severities in crashes around intersections. For example, the probability of having severe injuries is higher for non-alcohol-influenced drivers when the drivers are 65 years old or older. Drivers’ left-turning action will increase non-alcohol-influenced driver injury severities in crash occurring around intersections. However, different characteristics are captured for alcohol-influenced drivers involved in intersection-related crashes. For example, more severe injuries of alcohol-influenced drivers can be observed around intersections with three or more lanes on each approach. The model specifications and estimation results are also helpful for transportation agencies and decision makers to develop cost-effective solutions to reduce alcohol-involved crash severities and improve traffic system safety performance.

2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Lina Wu ◽  
Jiangwei Chu ◽  
Yusheng Ci ◽  
Shumin Feng ◽  
Xingwang Liu

Improving two-lane highway traffic safety conditions is of practical importance to the traffic system, which has attracted significant research attention within the last decade. Many cost-effective and proactive solutions such as low-cost treatments and roadway safety monitoring programs have been developed to enhance traffic safety performance under prevailing conditions. This study presents research perspectives achieved from the Highway Safety Enhancement Project (HSEP) that assessed safety performance on two-lane highways in Beijing, China. Potential causal factors are identified based on proposed evaluation criteria, and primary countermeasures are developed against inferior driving conditions such as sharp curves, heavy gradients, continuous downgrades, poor sight distance, and poor clear zones. Six cost-effective engineering solutions were specifically implemented to improve two-lane highway safety conditions, including (1) traffic sign replacement, (2) repainting pavement markings, (3) roadside barrier installation, (4) intersection channelization, (5) drainage optimization, and (6) sight distance improvement. The effectiveness of these solutions was examined and evaluated based on Empirical Bayes (EB) models. The results indicate that the proposed engineering solutions effectively improved traffic safety performance by significantly reducing crash occurrence risks and crash severities.


2007 ◽  
Vol 35 (2) ◽  
pp. 70-93
Author(s):  
Marion G. Pottinger ◽  
Joseph D. Walter ◽  
John D. Eagleburger

Abstract The Congress of the United States petitioned the Transportation Research Board of the National Academy of Sciences to study replacement passenger car tire rolling resistance in 2005 with funding from the National Highway Traffic Safety Administration. The study was initiated to assess the potential for reduction in replacement tire rolling resistance to yield fuel savings. The time required to realize these savings is less than the time required for automotive and light truck fleet replacement. Congress recognized that other factors besides fuel savings had to be considered if the committee’s advice was to be a reasonable guide for public policy. Therefore, the study simultaneously considered the effect of potential rolling resistance reductions in replacement tires on fuel consumption, wear life, scrap tire generation, traffic safety, and consumer spending for tires and fuel. This paper summarizes the committee’s report issued in 2006. The authors, who were members of the multidisciplinary committee, also provide comments regarding technical difficulties encountered in the committee’s work and ideas for alleviating these difficulties in further studies of this kind. The authors’ comments are clearly differentiated so that these comments will not be confused with findings, conclusions, and recommendations developed by the committee and contained in its final report.


1981 ◽  
Vol 9 (1) ◽  
pp. 19-25 ◽  
Author(s):  
G. S. Ludwig ◽  
F. C. Brenner

Abstract Belted bias and radial Course Monitoring Tires were run over the National Highway Traffic Safety Administration tread wear course at San Angelo on a vehicle instrumented to measure lateral and longitudinal accelerations, speed, and number of wheel rotations. The data were recorded as histograms. The distribution of speed, the distributions of lateral and longitudinal acceleration, and the number of acceleration level crossings are given. Acceleration data for segments of the course are also given.


2011 ◽  
Vol 332-334 ◽  
pp. 1162-1166
Author(s):  
Zhuo Zhang ◽  
Ying Qing Liu ◽  
Zhong Hai Ren ◽  
Jia Zhuang Ma ◽  
Hu Shui Ye

The flammability is one of the most important features about safety for automotive interior material. This paper summarized the testing standards for flammability performed testing on a type of interior textile material made by one of domestic manufacturers, in accordance with the Chart 571.302 Standard No. 302 of the National Highway Traffic Safety Administration of U.S. The complete introduction of national mandatory standard of China in flammability of interior material was introduced and domestic test standards of flammability with those of foreign countries all over world were compared. Finally, this paper proposed possible and would-be necessary parameters based on comprehensiveness of this kind of test due to safer requirement in future.


1996 ◽  
Vol 11 (S2) ◽  
pp. S41-S41
Author(s):  
John E. Gough ◽  
Richard C. Hunt

Purpose: To determine the most frequent sources of injuries from the interior of motor vehicles involved in crashes.Methods: We searched the National Highway Traffic Safety Administration's National Accident Sampling System to determine the most frequent sources of injuries. This database includes sources of injuries resulting from crashes from January 1, 1991 to December 31, 1992.


Author(s):  
Frederik Naujoks ◽  
Sebastian Hergeth ◽  
Katharina Wiedemann ◽  
Nadja Schömig ◽  
Andreas Keinath

Reflecting the increasing demand for harmonization of human machine interfaces (HMI) of automated vehicles, different taxonomies of use cases for investigating automated driving systems (ADS) have been proposed. Existing taxonomies tend to serve specific purposes such as categorizing transitions between automation modes; however, they cannot be generalized to different systems or combinations of systems. In particular, there is no exhaustive set of use cases that allows entities to assess and validate the HMI of a given ADS that takes into account all possible system modes and transitions. The present paper describes a newly developed framework based on combinatorics of SAE (Society of Automotive Engineers) automation levels that incorporates a comprehensive taxonomy of use cases required for the assessment and validation of ADS HMIs. This forms a much-needed basis for test methods required to verify whether an HMI meets minimum requirements such as those outlined in the National Highway Traffic Safety Administration’s Federal Automated Vehicles policy.


Author(s):  
Jerry S. Ogden

Analysis of vehicle deformation from impacts largely relies upon A and B stiffness coefficients for vehicle structures in order to approximate the velocity change and accelerations produced by an impact. While frontal impact stiffness factors for passenger vehicles, light trucks, vans, and sport utility vehicles are relatively prevalent for modern vehicles, stiffness factors for rear and side structures, as well as heavy vehicles, buses, recreational vehicles, trailers, motorcycles, and even objects, are essentially non-existent. This paper presents the application of the Generalized Deformation and Total Velocity Change Analysis to real-world collision events (G-DaTA?V™ System of Equations) as developed by this author. The focus of this paper addresses the relative precision and accuracy of the G-DaTA?V™ System of Equations for determining the total velocity change for oblique and/or offset vehicle-to-vehicle collisions involving light trucks and sport utility vehicles, which are largely under-represented with modern vehicle A and B stiffness values for side and rear surfaces. The previous paper presented by this author to the Academy addressed the relative accuracy and precision of the G-DaTA?V™ System of Equations as they relate to a first validation using the RICSAC-staged collision database. As a secondary and more comprehensive validation process, the G-DaTA?V™ System of Equations will be applied to real-world collision data obtained through the National Automotive Sampling System (NASS), which provides the National Highway Traffic Safety Administration (NHTSA) with a comprehensive compilation of real-world collision events representing a broad-based collection of collision configurations from across the country. This data represents a reusable source of information that was collected using standardized field techniques implemented by NASS-trained field technicians. Through using a “core set of crash data components,” NASS has demonstrated its utility and applicability to a vast array of statistical and analytical studies regarding traffic safety and vehicle collision dynamics.


Sign in / Sign up

Export Citation Format

Share Document