scholarly journals MONITORING SYSTEM OF THE ROAD EMBANKMENT

2017 ◽  
Vol 12 (4) ◽  
pp. 218-224 ◽  
Author(s):  
Mikołaj Miśkiewicz ◽  
Błażej Meronk ◽  
Tadeusz Brzozowski ◽  
Krzysztof Wilde

The paper presents the analysis of the monitoring system of the embankment supported on concrete columns and overlaid by a load transfer platform with the embedded steel grid. This field investigation was to study the complex interaction between the columns, the load transfer platform layer, and steel grid via in situ measurements during erection and live loading of the embankment. The study was focused on the behaviour of steel grid and the behaviour of the outer rows of columns since there are limited reference data available for this problem. The system was designed to inform the engineers about the condition of the embankment at every stage of construction and during standard operation of the road. The measurements brought the information on strain variations of steel grid, concrete columns, and structural settlement and provided necessary evidence for the embankment numerical model validation.

2018 ◽  
Vol 2018 (11) ◽  
pp. 106-115
Author(s):  
Piotr Jaskula ◽  
Mariusz Jaczewski ◽  
Dawid Ryś ◽  
Marek Pszczoła

Article presents the comparison of performance of selected road sections in north-eastern Poland constructed under typical contract conditions, with the usage of High Modulus Asphalt Concrete and typical Asphalt concrete The field investigation comprised of the assessment of: the number of transverse thermal cracking, the bearing capacity and the load transfer coefficient around the thermal cracks. The FWD test confirmed lower deflections of the road sections constructed with base courses made of High Modulus Asphalt Concrete and presented two times higher values of the stiff ness modulus of those pavements. The load transfer coefficient for pavements constructed with base course made of High Modulus Asphalt Concrete indicated almost lack of load transfer around the thermal cracks. In was very surprising as the tested roads were quite new (2-7 years) and with high bearing capacity. The article was made on the basis of the paper presented on BESTInfra conference, which was held in Prague.


Author(s):  
Diego Cruz Roque ◽  
Jaime Nu´n˜ez Farfa´n ◽  
Pro´coro Barrera Nabor ◽  
Wilbert Koh Cambranis

Natural Gas emanations at the Campeche Sound in the Gulf of Mexico have caused in some cases the failure of soils under existent platforms. The gas pockets that were detected in shallow geophysical surveys prior to the platform installations have migrated invading the area of some platforms. The presence of these shallow gas pockets and sudden gas emanations (blow out) is a cause of concern regarding the safety of the existent and planned platforms. An investigation was carried out in order to assess the effect of the gas emanations and the presence of the shallow gas on the safety of the platforms. The investigation included a desk study with the purpose of integrating all relevant information from the reservoir and up to the sea bed with the participation of all the disciplines involved. On these bases, a field investigation was planned, to confirm the results of the desk study. This investigation included the application of several new techniques in the exploration field. The field investigation included geophysical, geotechnical and geochemical exploration, as well as the installation of a monitoring system to better understand the complex gas effects on the structures foundation. A 3D high resolution seismic survey was used to investigate the origin and dimensions of the shallow gas pockets. Te evaluation of the effects of shallow gas and hydrocarbon deposits on the existing and proposed structures in the Cantarell field was achieved through an integrated analysis of the geophysical data, in situ measurement of pore pressure, in situ and laboratory geotechnical analysis of gas in soil boring profiles, special static and cyclic laboratory testing on hydrocarbon saturated soils, and special cyclic testing on gas-saturated granular soils. The study shows that the current levels of pressure in the hydrocarbon pockets are not expected to affect the existent structures safety; however, as it has happened in the past, it is possible that pressure could build up and cause a sudden gas expulsion affecting existing platforms. Taking this in consideration a monitoring system was installed in order to measure the pressurization of the foundation zone strata that could result in weakening of the soil response affecting the structure stability.


2013 ◽  
Vol 303-306 ◽  
pp. 2885-2888
Author(s):  
Dong Hui Yang

Masonry in-filled reinforcement concrete (R/C) structure is famous for its’ flexible space arrangement, easy construction and high force resistant capacity as well as its’ high ductility. However, in recent destructive earthquakes happened in China, more and more severe damages of masonry in-filled R/C frame structures have been observed due to either unreasonable design or unexpected-high ground motion exceeding the seismic design intensity mostly. In the field investigation for the 2010 Yushu Ms7.1 earthquake of China, 6 masonry in-filled R/C frame buildings, were in-situ tested by using the ambient vibration method. Both of the test results of the natural period for each structure as well as their damage mechanism were described and analyzed simply. The test results provide reference data for nonlinear numerical analysis and retrofitting of earthquake damaged RC frame structures.


2021 ◽  
Vol 13 (7) ◽  
pp. 1238
Author(s):  
Jere Kaivosoja ◽  
Juho Hautsalo ◽  
Jaakko Heikkinen ◽  
Lea Hiltunen ◽  
Pentti Ruuttunen ◽  
...  

The development of UAV (unmanned aerial vehicle) imaging technologies for precision farming applications is rapid, and new studies are published frequently. In cases where measurements are based on aerial imaging, there is the need to have ground truth or reference data in order to develop reliable applications. However, in several precision farming use cases such as pests, weeds, and diseases detection, the reference data can be subjective or relatively difficult to capture. Furthermore, the collection of reference data is usually laborious and time consuming. It also appears that it is difficult to develop generalisable solutions for these areas. This review studies previous research related to pests, weeds, and diseases detection and mapping using UAV imaging in the precision farming context, underpinning the applied reference measurement techniques. The majority of the reviewed studies utilised subjective visual observations of UAV images, and only a few applied in situ measurements. The conclusion of the review is that there is a lack of quantitative and repeatable reference data measurement solutions in the areas of mapping pests, weeds, and diseases. In addition, the results that the studies present should be reflected in the applied references. An option in the future approach could be the use of synthetic data as reference.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 276
Author(s):  
Nisar Ali Khan ◽  
Giorgio Monti ◽  
Camillo Nuti ◽  
Marco Vailati

Infilled reinforced concrete (IRC) frames are a very common construction typology, not only in developing countries such as Pakistan but also in southern Europe and Western countries, due to their ease of construction and less technical skills required for the construction. Their performance during past earthquakes has been in some cases satisfactory and in other cases inadequate. Significant effort has been made among researchers to improve such performance, but few have highlighted the influence of construction materials used in the infill walls. In some building codes, infills are still considered as non-structural elements, both in the design of new buildings and, sometimes, in the assessment of existing buildings. This is mainly due to some difficulties in modeling their mechanical behavior and also the large variety of typologies, which are difficult to categorize. Some building codes, for example, Eurocode, already address the influence of infill walls in design, but there is still a lack of homogeneity among different codes. For example, the Pakistan building code (PBC) does not address infills, despite being a common construction technique in the country. Past earthquake survey records show that construction materials and infill types significantly affect the seismic response of buildings, thus highlighting the importance of investigating such parameters. This is the object of this work, where a numerical model for infill walls is introduced, which aims at predicting their failure mode, as a function of some essential parameters, such as the friction coefficient between mortar and brick surface and mortar strength, usually disregarded in previous models. A comprehensive case study is presented of a three-story IRC frame located in the city of Mirpur, Pakistan, hit by an earthquake of magnitude 5.9 on 24 September 2019. The results obtained from the numerical model show good agreement with the damage patterns observed in situ, thus highlighting the importance of correctly modeling the infill walls when seismically designing or assessing Pakistani buildings that make use of this technology.


2021 ◽  
Vol 176 ◽  
pp. 106361
Author(s):  
Wout Weijtjens ◽  
Andre Stang ◽  
Christof Devriendt ◽  
Peter Schaumann

1942 ◽  
Vol 79 (4) ◽  
pp. 241-252 ◽  
Author(s):  
C. A. Matley ◽  
Frank Raw

The rocks exposed along the road between Linstead and Guy's Hill, Jamaica, were described by Dr. C. T. Trechmann in this magazine in 1936 (pp. 259–260). The chief object of his account was to prove that the igneous rocks there were intrusions later than the associated Cretaceous and Tertiary limestones, which, according to him, had been metamorphosed into hornfelses, some of which, he stated later (1937, p. 561), he knew to have an “igneous” appearance under the microscope, “which tends to support my contention that in Jamaica we have sedimentaries altered in situ into rocks that would ordinarily be classified as igneous.” Dissent from his descriptions and interpretations was expressed by C. A. M. (Matley, 1937, pp. 501–3), the criticisms being mainly based on an examination of Trechmann's own microscope slides by F. R. A visit to Jamaica by C. A. M. in 1939 allowed him to study this road and to collect a suite of rocks for petrological examination. The results show that Trechmann's interpretation cannot be sustained. There is no granodiorite or other plutonic rock present, no metamorphism hornfelsing the sedimentary rocks, and no igneous intrusions into the Tertiary limestones.


2010 ◽  
Author(s):  
ByoungChang Kim ◽  
MinCheol Kwon ◽  
JaeBoong Ha ◽  
KangWoo Lee

Author(s):  
Ю. Г. Москалькова ◽  
С. В. Данилов ◽  
В. А. Ржевуцкая

Постановка задачи. Исследуется метод усиления железобетонных колонн устройством стальной обоймы с обетонированием, который позволяет восстанавливать эксплуатационные показатели колонн, имеющих значительные дефекты и повреждения. Предпосылкой настоящих исследований явилось предположение о том, что усиление стальной обоймой с обетонированием является эффективным способом повышения несущей способности железобетонных колонн, причем вариант приложения нагрузки - только на бетонное ядро или ко всему сечению - существенно на эффективность усиления не влияет. В связи с этим целью исследования является определение необходимости устройства стального оголовка и включения в работу ветвей стальной обоймы при условии обетонирования стержня колонны по всей высоте. Результаты и выводы. Рациональным признан способ передачи нагрузки только на бетонное ядро усиленных колонн, поскольку устройство оголовка стальной обоймы требует применения сложных конструктивно-технологических решений, но при этом дополнительно увеличивает несущую способность незначительно (согласно проведенным исследованиям менее чем на 10 %). Ввиду отсутствия необходимости устройства конструкций стального оголовка снижаются трудоемкость и сроки производства работ по усилению колонн. Statement of the problem. The method of strengthening reinforced concrete columns with a steel clipping and the concrete surfacing is investigated. This method allows one to repair the columns with significant defects and damage. The prerequisite for this study was the assumption of strengthening with a steel clipping and the concrete surfacing is an effective way to increase the ultimate limit state of reinforced concrete columns, furthermore, the option of applying the load (only to the concrete core or to the entire section) does not significantly affect the strengthening effectiveness. In this regard, the purpose of the investigation was to identify the need to include the steel jacketing in the work, on the condition the column is coated with concrete along with the entire height. Results and conclusions. The load transfer method only to the concrete core of the strengthened columns is recognized as rational since the device of the steel clipping head requires the use of complex structural and technological solutions, but at the same time additionally increases the ultimate limit state insignificantly (according to the studies by less than 10 %). Due to the absence of the need to establish structures of the steel jacketing head, the labor intensiveness and terms of work production on strengthening the columns are reduced.


Sign in / Sign up

Export Citation Format

Share Document