scholarly journals Investigations on lightweight concrete prepared by combinations of rubber particles and expanded glass aggregate

Author(s):  
Suman Kumar Adhikary ◽  
Žymantas Rudžionis

Lightweight concrete is a very useful building material used in the construction sector for providing better insulation and lower energy consumption. Properties of lightweight aggregate, water-cement ratio, and other additives strongly affect the concrete strength, thermal properties, and workability. This paper investigates the behavior of lightweight concrete using rubber particles as fine aggregate, replaced by the expanded glass lightweight aggregate in the concrete mixture. In the concrete mixture expanded glass aggregate is replaced by rubber particles by 5%, 10%, 20%, 30%, 40%, and 50% by mass. Concrete workability, density, compressive strength, flexural strength, water absorption tests were examined. Workability and density were increasing by increasing rubber particles replacement percentages in the concrete mixture. On the other hand, compressive strength and flexural strength were decreasing by higher percentages of rubber particles replacement. Strength properties of rubberized concrete can be balanced by the proper utilization of binding materials in the concrete. Rubberized concrete can be used in the construction sector efficiently as partial replacement of lightweight aggregate in the concrete mixture.

2013 ◽  
Vol 844 ◽  
pp. 186-189
Author(s):  
Sunisa Suchat ◽  
Paisin Aditapsatit

Waste rubber is an environmental concern. The large global market of concrete products could usefully consume this waste, even if the fractions used were very low, provided such concrete mix had sufficient strength and other characteristics. Therefore, the properties of concrete mixes that include natural rubber were studied at 28 days of age, which is a standard time to characterize hardened concrete properties. We included two types of natural rubber in this study, namely natural rubber latex (NRL) and discarded rubber glove. First, 60% concentrate latex (HA: high ammonia) was used in latex per cement ratio 0.10 by volume. Second, discarded rubber gloves, passed through a #6 sieve with 3.36 mm size, were used to investigate effects of soft rubber particles, on strength and insulation properties of lightweight concrete. The hybrid rubberized concrete mixes had 0%, 10%, 20% and 40% partial substitution of sand by volume, at water-cement ratio of 0.45 by volume. Density, compressive strength, flexural strength, insulation property, and coefficient of thermal conductivity were measured. A small 10% fraction of rubber particles improved flexural strength. However, compressive strength decreased with the amount of rubber in concrete. The thermal conductivity was slightly lower than that of normal concrete. Natural rubber addition can produce a moderately lightweight concrete, with good thermal insulation, and the inclusion of rubber glove waste in concrete aggregate appears feasible. Applications could also include non-primary structural uses with medium to low strength requirements, benefiting from other features of concrete. The results suggest that waste rubber can be used to create value-added concrete composites with sufficient structural strength, and improved thermal insulation.


2018 ◽  
Vol 162 ◽  
pp. 02024
Author(s):  
Waleed Abbas ◽  
Wasan Khalil ◽  
Ibtesam Nasser

Due to the rapid depletion of natural resources, the use of waste materials and by-products from different industries of building construction has been gaining increased attention. Geopolymer concrete based on Pozzolana is a new material that does not need the presence of Portland cement as a binder. The main focus of this research is to produce lightweight geopolymer concrete (LWGPC) using artificial coarse lightweight aggregate which produced from locally available bentonite clays. In this investigation, the binder is low calcium fly ash (FA) and the alkali activator is sodium hydroxide and sodium silicate in different molarities. The experimental tests including workability, fresh density, also, the compressive strength, splitting tensile strength, flexural strength, water absorption and ultrasonic pulse velocity at the age of 7, 28 and 56 days were studied. The oven dry density and thermal conductivity at 28 days age are investigated. The results show that it is possible to produce high strength lightweight geopolymer concrete successfully used as insulated structural lightweight concrete. The 28-day compressive strength, tensile strength, flexural strength, dry density, and thermal conductivity of the produced LWGPC are 35.8 MPa, 2.6MPa, 5.5 MPa, 1835kg/m3, and 0.9567 W/ (m. K), respectively.


2013 ◽  
Vol 357-360 ◽  
pp. 897-904 ◽  
Author(s):  
Qing Wen Ma ◽  
Jin Chao Yue

Rubber particles were dipped into NaOH solution in order to wipe the zinc stearate generated in the process of preparation of rubber power. Rubber with different particle diameters and mixing amount (sand replaced in equal volume percentage) was adopted to produce rubberized concrete specimens. A series of tests including compressive strength tests, flexural strength tests, elastic modulus tests and ultimate strain ratio tests were done respectively. The results of tests showed that the value of the compressive strength, flexural strength and elastic modulus decreased with the increase of the mixing amount of rubber, while the decrease amplitude was different from each other. The value of ultimate strain increased a little and the ability of toughness and deformation of rubberized concrete were enhanced obviously through dipping rubber particles into NaOH solution.


2017 ◽  
Vol 864 ◽  
pp. 296-301
Author(s):  
Thiago Francisco de Souza ◽  
Paulo Roberto Lopes Lima ◽  
Franco Dani Rico Amado ◽  
Rosana de Alburquerque Arleo Alvim ◽  
Felipe Martins Ramos dos Santos ◽  
...  

The residue of Ethylene-Vinyl Acetate (EVA) generated in the footwear industry is an economic and environmental problem as it requires large area for storage in landfills and is not biodegradable or capable of transformation into other polymers. Its use as a lightweight aggregate in mortar and concrete results in a material with lower density but with reduced strength. In this paper, piassava fibers (Attalea funifera Martius) were used as reinforcement of lightweight concrete containing 4% and 6% of EVA, with the goal of improving the flexural strength of the material. The determination of density, compressive strength and flexural strength were performed at 28 days of age. The experimental results demonstrate that the addition of EVA decreases the density and flexural strength of the concrete in proportion to the amount of addition, but a recovery resistance is obtained when the piassava fibers are added in amounts of 1 to 2% by volume.


Lightweight concrete is the way to reduce the weight as well as deflection in concrete members without affecting its properties. Many of the researches are in progress to find a substitute for this lightweight material. In this project, we would like to take the naturally available fibre named sisal fibre and bamboo as partial replacement material. The influence of sisal fibres on the strength of concrete is taken as the main objective of this experimental study. The addition of natural fibre to the lightweight concrete will enhance the various strength parameters like flexural strength, compressive strength, and increase the ductile behaviour. In the present work, it is aimed to investigate the mechanical properties of lightweight concrete with a replacement of sisal fibre for cement and bamboo as a replacement in coarse aggregate in different percentages. The compressive strength, flexural strength, deflection of the beam is studied with consideration of M25 concrete specimens. Totally 36 number of 500 x 100 x 100mm flexural member cast and tested. It is recommended up to 5% replacement of coarse aggregate with bamboo and 5% addition of sisal fibres with cement provide at M25 grade of concrete gives the optimum increases of strength values. The test results indicated that the sisal fibres were effective in improving the strength of lightweight concrete.


Abstract: Innate fibres, these days have become the topic of argument in the research field between different scientists to inculcate it in the formation of lightweight concrete mixture. This is due to a variety of rewards connected with natural fibres like recyclable, economical, availability in large quantity and its bio-degradability. Plenty of projects have been carried out in the production of natural fibre reinforced lightweight concrete. In this project, we would like to take the naturally existing fibre named sisal fibre and banana fibre as partial replacement material. The adding of natural fibre to the lightweight concrete will enhance the diverse strength parameters like flexural strength, compressive strength, and increase the ductile behaviour. In the current work, it is intended to explore the mechanical properties of lightweight concrete with substitution of sisal fibre and banana fibre for cement in different percentages. The compressive strength, flexural strength, deflection of the beam is calculated with the reflection of M30 concrete specimens. Totally 45 number of 500 x 100 x 100mm flexural member, 45 numbers of cubes and 45 numbers of cylinders are cast and tested. It is suggested that up to 1.5% substitution of sisal fibres and banana fibre with cement provide at M30 grade of concrete giveing the most beneficial increases of strength values. The assessment outcome indicated that the sisal fibres and banana fibre were efficient in improving the performance of lightweight concrete


2013 ◽  
Vol 787 ◽  
pp. 131-137 ◽  
Author(s):  
B.A. Herki ◽  
Jamal M. Khatib

This paper covers the results of an experimental investigation on mechanical and durability properties of concrete containing waste polystyrene based lightweight aggregate called Stabilised Polystyrene (SPS) as a partial replacement of natural aggregates. The properties investigated in this paper were water absorption by capillary action and total absorption, compressive strength and ultrasonic pulse velocity (UPV). The composite aggregate was formed with 80% waste polystyrene which was shredded to different sizes, 10% of a natural additive to improve the resistance to segregation and 10% Portland cement. The natural fine aggregate were replaced with 0%, 30%, 60% and 100% (by volume) of SPS. There was an increasing in water absorption and a decreasing in compressive strength and UPV with the increase in SPS aggregate content in concrete.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suman Kumar Adhikary ◽  
Žymantas Rudžionis ◽  
Simona Tučkutė ◽  
Deepankar Kumar Ashish

AbstractThis study is aimed to investigate the effect of carbon nanotubes on the properties of lightweight aggregate concrete containing expanded glass and silica aerogel. Combinations of expanded glass (55%) and hydrophobic silica aerogel particles (45%) were used as lightweight aggregates. Carbon nanotubes were sonicated in the water with polycarboxylate superplasticizer by ultrasonication energy for 3 min. Study results show that incorporating multi-wall carbon nanotubes significantly influences the compressive strength and microstructural performance of aerogel based lightweight concrete. The addition of carbon nanotubes gained almost 41% improvement in compressive strength. SEM image of lightweight concrete shows a homogeneous dispersal of carbon nanotubes within the concrete structure. SEM image of the composite shows presence of C–S–H gel surrounding the carbon nanotubes, which confirms the cites of nanotubes for the higher growth of C–S–H gel. Besides, agglomeration of carbon nanotubes and the presence of ettringites was observed in the transition zone between the silica aerogel and cementitious materials. Additionally, flowability, water absorption, microscopy, X-ray powder diffraction, and semi-adiabatic calorimetry results were analyzed in this study.


2013 ◽  
Vol 357-360 ◽  
pp. 1082-1085 ◽  
Author(s):  
Kamarul Aini Mohd Sari ◽  
Sohif Mat ◽  
Khairiah Haji Badri ◽  
Muhammad Fauzi Mohd Zain

An experimental program was performed to obtain the density, compressive strength, and thermal conductivity of palm-based lightweight concrete. Palm-based polyurethane (PU) particles were used as lightweight aggregates in creating concrete systems. Concrete systems contain palm kernel oil-based polyol (PKO-p) reacted with 2,4-methylene diphenyl diisocyanate (MDI). In this study, polymer concrete was improved to achieve the optimum level of PU with the lowest possible density. The PU particles in the concrete mixture comprised of 1% to 5% w/w with density of less than 1800 kg/m3. The PU particles were 5 mm in size. The ratio of PKO-p to MDI was set at 1:1 and the loading of the concrete mixture was set at 3% w/w to produce lightweight concrete. The resulting concrete has excellent compressive strength (17.5 MPa) and thermal conductivity (0.24 W/mK). Results show that the PU particle dosage has the most significant effect on the physical and mechanical properties of concrete.


2010 ◽  
Vol 3 (2) ◽  
pp. 195-204 ◽  
Author(s):  
W.G Moravia ◽  
A. G. Gumieri ◽  
W. L. Vasconcelos

Nowadays lightweight concrete is used on a large scale for structural purposes and to reduce the self-weight of structures. Specific grav- ity, compressive strength, strength/weight ratio and modulus of elasticity are important factors in the mechanical behavior of structures. This work studies these properties in lightweight aggregate concrete (LWAC) and normal-weight concrete (NWC), comparing them. Spe- cific gravity was evaluated in the fresh and hardened states. Four mixture proportions were adopted to evaluate compressive strength. For each proposed mixture proportion of the two concretes, cylindrical specimens were molded and tested at ages of 3, 7 and 28 days. The modulus of elasticity of the NWC and LWAC was analyzed by static, dynamic and empirical methods. The results show a larger strength/ weight ratio for LWAC, although this concrete presented lower compressive strength.


Sign in / Sign up

Export Citation Format

Share Document