ANALYSIS OF THE TRAFFIC LOAD–INDUCED STRESSES OF EMBANKMENT

2022 ◽  
Vol 14 (0) ◽  
pp. 1-7
Author(s):  
Mindaugas Zakarka

This article represents traffic loads on the road structure distribution and evaluation of the vertical and horizontal stresses formation in the soil embankment. This evaluation allows to predict the depth and intensity of the propagation of additional stresses resulting from traffic loads. The calculations were performed in accordance with four normative documents applied in Lithuania, which define the loads on the road structure. The obtained results showed that the area to which the load is distributed has the greatest influence on the intensity of stresses and the distance of propagation. The maximum horizontal stress in the embankment was found to be no more than 70 kPa and the maximum stress propagation depth did not exceed 0.9 m. The results can be applied to a triaxial test apparatus to restore horizontal stresses in the embankment. It is recommended to select a lateral pressure from 20 kPa to 70 kPa for tests provided with triaxial test device. The mechanical properties of the soil determined with triaxial test device and recommended lateral pressure would be representative of the test results obtained in the field of embankment.

2014 ◽  
Vol 2 (10) ◽  
pp. 6623-6651 ◽  
Author(s):  
N. K. Meyer ◽  
W. Schwanghart ◽  
O. Korup ◽  
F. Nadim

Abstract. Globalization and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g., road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load expressed as vehicle kilometers because of debris-flow related road closures. We present two scenarios demonstrating the impact of debris flows on the road network, and quantify the associated path failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and northwestern part of the study area are associated with high link failure risk. Yet options for detours on major routes are manifold, and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying of speedy delivery of services and goods.


Author(s):  
Ayaanle Maxamed Ali

The culvert is small structures that are required for the under roads and its uses for the crossing of water like streams under the roads. The culvert structure balances the water flow on both sides of the roads, also is protecting and balance of the embankment to reduce the water flow level. There are different types of culverts shapes, and they are circle, arch, Slap & box; therefore, these can be constructed by using different materials like; stones, bricks, reinforced cement concrete. Since the culvert crossing under the earthen embankment, so the culvert is subjecting a traffic load similarly as the roads carry; therefore, they required to be designed for such loads the acting on the surface of the culvert. This project is dealing with the RCC box culvert with and without cushions. The cushion depends on the road profile at the culvert location.


2015 ◽  
Vol 796 ◽  
pp. 25-33
Author(s):  
Petr Mondschein ◽  
Adam Konvalinka ◽  
Pavel Svoboda

High traffic load and high temperatures are two crucial aspects, which cause together with static treatment of transport, respectively slow traffic, permanent deformations in the construction of flexible pavement (the cover layer of asphalt). Standard asphalt adjustments are not able to withstand such loads. For these reasons they are looking at ways to increase the functionality of asphalt mixtures and extend their lifespan, respectively delay condition, where it is not possible to use it comfortably. On the road is necessary to look at the whole life cycle and give priority in justified cases to demanding investment solutions, which thanks to longer durability and longer repair cycle will be cheaper. Such solutions are composite materials based on asphalt. Among them are technology of asphalt and cement composite (ACC), which uses strengths of both used materials, or by analogy with the principle of concrete reinforcement in asphalt mixtures. This article presents the characteristics of both technologies, their properties and points to the longer life of the construction of roads in their application.


2015 ◽  
Vol 18 (03n04) ◽  
pp. 1550009 ◽  
Author(s):  
E. ANDREOTTI ◽  
A. BAZZANI ◽  
S. RAMBALDI ◽  
N. GUGLIELMI ◽  
P. FREGUGLIA

Statistical mechanics points out as fluctuations have a relevant role for systems near critical points. We study the effect of traffic fluctuations and the transition to congested states for a stochastic dynamical model of traffic on a road network. The model simulates a finite population that moves from one road to another according to random transition probabilities. In such a way, we mimic the traffic fluctuations due to the granular feature of traffic and the dynamics at the crossing points. Then the amplitude of traffic flow fluctuations is proportional to the average flow as suggested by empirical observations. Assuming a parabolic shaped flow-density relation, there exists an unstable critical point for the road dynamics and the system can perform a phase transition to a congested state, where some roads reach their maximal capacity. We apply a statistical physics approach to study the onset congestion and we characterize analytically the relation between the fluctuations amplitude and the appearance of congested nodes. We verify the results by means of numerical simulations on a Manhattan-like road network. Moreover we point out the existence of oscillating regimes, where traffic oscillations back propagate on the road network, whose onset depend sensitively from the traffic fluctuations and that have a strong influence on the hysteresis cycles of the systems when the traffic load is modulated. The comparison between the numerical simulations and the empirical traffic data recorded by an inductive-loop traffic detector system (MTS system) on the county roads of the Emilia Romagna region in Italy is shortly discussed.


2021 ◽  
Vol 4 (4) ◽  
pp. 837
Author(s):  
Hans Hendito ◽  
Anissa Noor Tajudin

The most common causes of road damage are the design life of the road that has been passed, waterlogging on the road due to poor drainage, or even traffic load which can cause the service life of the road to be shorter than planned. To find out the conditions on the Jakarta-Cikampek Toll Road. Calculates the value of road pavement conditions calculated using the Indeks Kondisi Perkerasan (IKP) on the Jakarta-Cikampek Toll Road. To find out what kind of treatment we should do for the damage that occurs. The Indeks Kondisi Perkerasan is a quantitative indicator of pavement conditions that has a range of values ranging from 0 – 100, with a value of 0 representing the worst pavement condition while 100 representing the best pavement condition. The IKP method has a level of handling type for each IKP value. According to the IKP guidelines, the type of handling that must be carried out with an average IKP value of 96,32 is routine maintenance. For further research, it’s necessary to conduct a direct survey, so that accurate results can be obtained. It is necessary to study with various methods to be able to compare the level of accuracy of a method. ABSTRAKPenyebab kerusakan jalan yang paling umum adalah umur rencana jalan yang telah dilewati, genangan air pada jalan yang diakibatkan drainase yang buruk, atau bahkan beban lalu lintas yang berlebihan yang dapat menyebabkan umur pakai jalan akan menjadi lebih pendek daripada perencanaannya. Untuk mengetahui kondisi pada jalan Tol Jakarta-Cikampek. Menghitung nilai kondisi perkerasan jalan jika dihitung dengan Indeks Kondisi Perkerasan (IKP) pada ruas Tol Jakarta-Cikampek. Untuk mengetahui penanganan seperti apa yang harus kita lakukan terhadap kerusakan yang terjadi. Kondisi Perkerasan atau IKP adalah indikator kuantitatif (numerik) kondisi perkerasan yang mempunyai rentang nilai mulai 0 – 100, dengan nilai 0 nya menyatakan kondisi perkerasan paling jelek sementara 100 menyatakan kondisi perkerasan terbaik. Metode IKP memiliki tingkat jenis penanganan tiap nilai IKP. Menurut pedoman IKP, jenis penanganan yang harus dilakukan dengan nilai IKP rata-rata 96,32 adalah pemeliharaan rutin. Untuk penelitian selanjutnya, perlu untuk survei secara langsung, supaya hasil yang didapat lebih maksimal. Perlu diteliti dengan metode yang beragam untuk dapat membandingkan tingkat keakuratan sebuah metode.


Author(s):  
Bayu Tirta Leksana Purnomo ◽  
Latif Budi Suparman ◽  
Agus Taufik Mulyono

<em>The development of infrastructure in Indonesia was increasing. The government focuses on boosting infrastructure development to create long-term economic growth. Therefore, a qualified infrastructure was a standard of an advanced rapidly economy. One of them is under construction was road and toll road infrastructure. As a result of the development was the occurrence of the increasing volume of vehicles on the road. Due to this resulting in an increased load reposition and also increased vehicle load on the road, it was then combined with a wet tropical climate or humid warm areas in Indonesia that have high rainfall and temperatures that can reach 38<sup>o</sup>C, resulting in structural damage such as cracks, rutting, stripping, and pothole. Performance from pavement also declined faster than the estimated plan. Roads in Indonesia mostly use the type of concrete asphalt mixture. Characteristics for concrete asphalt prioritize stability. In fact, the most important thing was the stability and durability of the road. Various ways can be done to overcome the road damage and acquire the ideal characteristics such as the use of added materials to Hot Mix Asphalt. To improve the performance of pavement characteristics, the use of added materials was expected to overcome problems that are affected by temperature, weather, increased vehicle volume, and increased traffic load. The added materials are to enhance Reacted and Activated Rubber (RAR) which was a developed crumb rubber to increase durability and keep the level of road pavement stability.</em>


2019 ◽  
Vol 14 (2) ◽  
pp. 1
Author(s):  
Dwina Archenita

Traffic is an important part of road pavement design in addition to subgrade strength. This is because traffic is a burden for the road and is very decisive in the thick planning of each layer of pavement. Thus the calculation of the traffic load should have been carried out before carrying out the design of the pavement. The Sicincin - Lubuk Alung ring road section located in Kab.Padang Pariaman is one of the road sections designed with pavement design. Therefore, a traffic survey was carried out on the road section. Traffic surveys are carried out for three days, two days on weekdays and one day on holidays. Every day the survey time is divided into three times, morning, afternoon and evening at rush hour. The survey in the morning takes place at 07:15 - 08:15 and 08:15 - 09:15 while in the afternoon it takes place at 13:00 - 14:00 and 14:00 - 15:00. Furthermore, for the afternoon survey, it will be held at 16:00 - 17:00 and 17:00 - 18:00. After processing the data, in each survey period the LHR value is obtained for both directions. The LHR value used for pavement design is the largest LHR value of all LHR values obtained.


2015 ◽  
Vol 15 (5) ◽  
pp. 985-995 ◽  
Author(s):  
N. K. Meyer ◽  
W. Schwanghart ◽  
O. Korup ◽  
F. Nadim

Abstract. Globalisation and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g. road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load, expressed as vehicle kilometres, because of debris-flow-related road closures. We present two scenarios demonstrating the impact of debris flows on the road network and quantify the associated path-failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and north-western part of the study area are associated with high link-failure risk. Yet options for detours on major routes are manifold and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying on speedy delivery of services and goods.


2013 ◽  
Vol 853 ◽  
pp. 229-234 ◽  
Author(s):  
Donatas Čygas ◽  
Alfredas Laurinavičius ◽  
Audrius Vaitkus ◽  
Zigmantas Perveneckas

This paper presents the first experimental pavement test road section in Lithuania including pavement design, annual measurements, data acquisition and response analysis. The road of experimental pavement structures was constructed in 2007. It’s laid on the road to the query, one traffic lane is used by loaded traffic and other – by unloaded traffic. The road consists of 27 different pavement structures with the same class of pavement structure but the different type and composition of materials. Final results after five years of monitoring indicate the performance of typical Lithuania flexible pavement structures influenced by different traffic loads. The total number of ESAL’s (100 kN) in February 2013 was 353 000.


2014 ◽  
Vol 633-634 ◽  
pp. 1095-1099 ◽  
Author(s):  
Rui Liang Xu ◽  
Tao Yang

Based on the analysis of relevant characteristics of the traffic load, explores the impact of static and dynamic vehicle type, shaft type factors,and cars on the road, down to analyze the stress level in the soil loads -deformation relationship Through theoretical analysis, research, and future prospects, the measures proposed to solve the problem, come to study the mechanical properties of the program under the vehicle load soil and make the outlook for future work in this area terramechanics.


Sign in / Sign up

Export Citation Format

Share Document