scholarly journals Dynamically Tagged Groups of Very Metal-poor Halo Stars from the HK and Hamburg/ESO Surveys

2021 ◽  
Vol 907 (1) ◽  
pp. 10
Author(s):  
Guilherme Limberg ◽  
Silvia Rossi ◽  
Timothy C. Beers ◽  
Hélio D. Perottoni ◽  
Angeles Pérez-Villegas ◽  
...  
Keyword(s):  
1988 ◽  
Vol 132 ◽  
pp. 501-506
Author(s):  
C. Sneden ◽  
C. A. Pilachowski ◽  
K. K. Gilroy ◽  
J. J. Cowan

Current observational results for the abundances of the very heavy elements (Z>30) in Population II halo stars are reviewed. New high resolution, low noise spectra of many of these extremely metal-poor stars reveal general consistency in their overall abundance patterns. Below Galactic metallicities of [Fe/H] Ã −2, all of the very heavy elements were manufactured almost exclusively in r-process synthesis events. However, there is considerable star-to-star scatter in the overall level of very heavy element abundances, indicating the influence of local supernovas on element production in the very early, unmixed Galactic halo. The s-process appears to contribute substantially to stellar abundances only in stars more metal-rich than [Fe/H] Ã −2.


1999 ◽  
Vol 117 (2) ◽  
pp. 855-867 ◽  
Author(s):  
Gretchen L. H. Harris ◽  
William E. Harris ◽  
Gregory B. Poole

Author(s):  
Alis J Deason ◽  
Denis Erkal ◽  
Vasily Belokurov ◽  
Azadeh Fattahi ◽  
Facundo A Gómez ◽  
...  

Abstract We use a distribution function analysis to estimate the mass of the Milky Way out to 100 kpc using a large sample of halo stars. These stars are compiled from the literature, and the vast majority ($\sim \! 98\%$) have 6D phase-space information. We pay particular attention to systematic effects, such as the dynamical influence of the Large Magellanic Cloud (LMC), and the effect of unrelaxed substructure. The LMC biases the (pre-LMC infall) halo mass estimates towards higher values, while realistic stellar halos from cosmological simulations tend to underestimate the true halo mass. After applying our method to the Milky Way data we find a mass within 100 kpc of M( < 100kpc) = 6.07 ± 0.29(stat.) ± 1.21(sys.) × 1011M⊙. For this estimate, we have approximately corrected for the reflex motion induced by the LMC using the Erkal et al. model, which assumes a rigid potential for the LMC and MW. Furthermore, stars that likely belong to the Sagittarius stream are removed, and we include a 5% systematic bias, and a 20% systematic uncertainty based on our tests with cosmological simulations. Assuming the mass-concentration relation for Navarro-Frenk-White haloes, our mass estimate favours a total (pre-LMC infall) Milky Way mass of M200c = 1.01 ± 0.24 × 1012M⊙, or (post-LMC infall) mass of M200c = 1.16 ± 0.24 × 1012 M⊙ when a 1.5 × 1011M⊙ mass of a rigid LMC is included.


2016 ◽  
Vol 834 (1) ◽  
pp. 23 ◽  
Author(s):  
Richard Sarmento ◽  
Evan Scannapieco ◽  
Liubin Pan

2011 ◽  
Vol 417 (3) ◽  
pp. 2206-2215 ◽  
Author(s):  
A. P. Cooper ◽  
S. Cole ◽  
C. S. Frenk ◽  
A. Helmi

2018 ◽  
Vol 68 (1) ◽  
pp. 377-404 ◽  
Author(s):  
Vincent Tatischeff ◽  
Stefano Gabici

In this review, we first reassess the supernova remnant paradigm for the origin of Galactic cosmic rays in the light of recent cosmic-ray data acquired by the Voyager 1 spacecraft. We then describe the theory of light-element nucleosynthesis by nuclear interaction of cosmic rays with the interstellar medium and outline the problem of explaining the measured beryllium abundances in old halo stars of low metallicity with the standard model of the Galactic cosmic-ray origin. We then discuss the various cosmic-ray models proposed in the literature to account for the measured evolution of the light elements in the Milky Way, and point out the difficulties that they all encounter. It seems to us that, among all possibilities, the superbubble model provides the most satisfactory explanation for these observations.


2019 ◽  
Vol 627 ◽  
pp. A173 ◽  
Author(s):  
M. Valentini ◽  
C. Chiappini ◽  
D. Bossini ◽  
A. Miglio ◽  
G. R. Davies ◽  
...  

Context. Very metal-poor halo stars are the best candidates for being among the oldest objects in our Galaxy. Samples of halo stars with age determination and detailed chemical composition measurements provide key information for constraining the nature of the first stellar generations and the nucleosynthesis in the metal-poor regime. Aims. Age estimates are very uncertain and are available for only a small number of metal-poor stars. We present the first results of a pilot programme aimed at deriving precise masses, ages, and chemical abundances for metal-poor halo giants using asteroseismology and high-resolution spectroscopy. Methods. We obtained high-resolution UVES spectra for four metal-poor RAVE stars observed by the K2 satellite. Seismic data obtained from K2 light curves helped improve spectroscopic temperatures, metallicities, and individual chemical abundances. Mass and ages were derived using the code PARAM, investigating the effects of different assumptions (e.g. mass loss and [α/Fe]-enhancement). Orbits were computed using Gaia DR2 data. Results. The stars are found to be normal metal-poor halo stars (i.e. non C-enhanced), and an abundance pattern typical of old stars (i.e. α and Eu-enhanced), and have masses in the 0.80−1.0 M⊙ range. The inferred model-dependent stellar ages are found to range from 7.4 Gyr to 13.0 Gyr with uncertainties of ∼30%−35%. We also provide revised masses and ages for metal-poor stars with Kepler seismic data from the APOGEE survey and a set of M4 stars. Conclusions. The present work shows that the combination of asteroseismology and high-resolution spectroscopy provides precise ages in the metal-poor regime. Most of the stars analysed in the present work (covering the metallicity range of [Fe/H] ∼ −0.8 to −2 dex) are very old >9 Gyr (14 out of 19 stars), and all of the stars are older than >5 Gyr (within the 68 percentile confidence level).


2007 ◽  
Vol 469 (1) ◽  
pp. 265-274 ◽  
Author(s):  
V. Tatischeff ◽  
J.-P. Thibaud
Keyword(s):  

2008 ◽  
Vol 23 (17n20) ◽  
pp. 1668-1674
Author(s):  
MOTOHIKO KUSAKABE ◽  
TOSHITAKA KAJINO ◽  
RICHARD N. BOYD ◽  
TAKASHI YOSHIDA ◽  
GRANT J. MATHEWS

Spectroscopic observations of metal poor halo stars give an indication of a possible primordial plateau of 6 Li abundance as a function of metallicity similar to that for 7 Li . The inferred abundance of 6 Li is ~1000 times larger than that predicted by standard big bang nucleosynthesis (BBN) for the baryon-to-photon ratio inferred from the WMAP data, and that of 7 Li is about 3 times smaller than the prediction. We study a possible solution to both the problems of underproduction of 6 Li and overproduction of 7 Li in BBN. This solution involves a hypothetical massive, negatively-charged particle that would bind to the light nuclei produced in BBN. The particle gets bound to the existing nuclei after the usual BBN, and a second epoch of nucleosynthesis can occur among nuclei bound to the particles. We numerically carry out a fully dynamical BBN calculation, simultaneously solving the recombination and ionization processes of negatively-charged particles by normal and particle-bound nuclei as well as many possible nuclear reactions among them. It is confirmed that BBN in the presence of these hypothetical particles can solve the two Li abundance problems simultaneously.


Sign in / Sign up

Export Citation Format

Share Document