scholarly journals A Semianalytic Afterglow with Thermal Electrons and Synchrotron Self-Compton Emission

2022 ◽  
Vol 924 (1) ◽  
pp. 40
Author(s):  
Donald C. Warren ◽  
Maria Dainotti ◽  
Maxim V. Barkov ◽  
Björn Ahlgren ◽  
Hirotaka Ito ◽  
...  

Abstract We extend previous work on gamma-ray burst afterglows involving hot thermal electrons at the base of a shock-accelerated tail. Using a physically motivated electron distribution based on first-principles simulations, we compute the broadband emission from radio to TeV gamma rays. For the first time, we present the effects of a thermal distribution of electrons on synchrotron self-Compton emission. The presence of thermal electrons causes temporal and spectral structure across the entire observable afterglow, which is substantively different from models that assume a pure power-law distribution for the electrons. We show that early-time TeV emission is enhanced by more than an order of magnitude for our fiducial parameters, with a time-varying spectral index that does not occur for a pure power law of electrons. We further show that the X-ray closure relations take a very different, also time-dependent, form when thermal electrons are present; the shape traced out by the X-ray afterglows is a qualitative match to observations of the traditional decay phase.

1989 ◽  
Vol 134 ◽  
pp. 393-395
Author(s):  
A. Lawrence

I am one of a large team studying an X-ray flux limited sample of 35 AGN, at radio (Unger et al 1987 MNRAS 228 521), IR (Ward et al 1987 ApJ 315 74 and Carleton et al 1987 ApJ 318 595), optical-UV (Boisson et al in preparation), and X-ray (Turner PhD thesis, Leicester) wavelengths. A gap in the data which we have just started to fill is the millimetre region. (Lawrence, Ward, Elvis, Robson, Smith, Duncan, and Rowan-Robinson). In Jan/Feb 1988 we made measurements of twelve objects at 800 and 1100 micron, using the ROE/QMC bolometer, UKT14, on the new UK/Dutch/Canadian facility on Mauna Kea, the James Clerk Maxwell Telescope, reaching 1 sigma sensitivity of ∼15–20 mJy, an order of magnitude improvement over previous data. The four radio loud objects measured were easily detected, as expected. These all have a strong blazar component, showing smooth but curved spectra over many decades, possibly log-Gaussian in form (Landau et al 1986 ApJ 308 78), or alternatively explicable by a small number of power-law components (Robson et al 1988 MNRAS in press). In any case, other evidence points to non-thermal radiation by a relativistically moving feature (high polarization, strong variability, superluminal motion). Eight radio quiet objects were measured, and upper limits only found, except for a possible four sigma detection of N2992. In all cases, the mm limits are far below the 100 micron IRAS fluxes. In four of the nearest objects, this is not too surprising, as fluxes are rising steeply throughout 12 to 100 micron, a sign that the IRAS data is dominated by cool interstellar dust emission (“cirrus”) from the discs of the parent galaxies. However we can also say that any postulated power law component of spectral index ∼1 dominating the near-IR, must become self-absorbed around ∼200 micron if the mm limits are not to be exceeded. Four rather more interesting objects are shown in Fig. 1. Again, any underlying power-law component must be self-absorbed by ∼100 micron, but is not clear that such a power-law is needed. N5506 and IC4329A have falling optical energy distributions, and large H α/Hβ ratios; on the other hand, the IR continuum lies well above the X-ray level, so there is good argument for absorption and re-radiation by dust. N4151, while flat through the near-IR-optical, has a large hump centred at ∼25 micron. Particularly important here are further new measurements by Engargiola et al (1987, ApJ in press),and Edelson et al (1988, preprint) which show the energy distribution to be falling so steeply from 155 to 438 micron that self-absorbed synchrotron is ruled out in this region. In fact, the whole energy distribution from mm to UV can be modelled without a power law at all, as shown in Fig 2. This uses a starburst component (from Rowan-Robinson and Crawford 1988, MNRAS in press), hot dust represented by three greybodies at 200K, 500K, and 1000K, starlight from a nuclear cusp, and a blackbody at 30,000K. Even MKN590, which at first sight looks like a power-law, can be modelled by similar components (Fig. 3).


1998 ◽  
Vol 179 ◽  
pp. 237-237 ◽  
Author(s):  
D. Leisawitz ◽  
S.W. Digel ◽  
S. Geitz

The Astrophysics Data Facility at NASA Goddard Space Flight Center supports the processing, management, and dissemination of data obtained by past, current, and future NASA and international astrophysics missions, and promotes the effective use of those data by the astrophysics community, educators, and the public. Our Multiwavelength Milky Way poster was printed for broad distribution. It depicts the Galaxy at radio, infrared, optical, X-ray, and gamma-ray wavelengths. In particular, the poster contains images of the Galactic 21-cm and CO (J = 1 → 0) line emission, and IRAS 12, 60, and 100 μm, COBE/DIRBE 1.25, 2.2, and 3.5 μm, Digitized Sky Survey optical wavelength, ROSAT/PSPC 0.25, 0.75, and 1.5 keV X-ray, and CGRO/EGRET E > 100 MeV gamma ray broadband emission. All of the data sets are publicly available. Captions describe the Milky Way and what can be learned about the Galaxy from measurements made in each segment of the electromagnetic spectrum. The poster is intended to be an educational tool, one that will stimulate heightened awareness by laypersons of NASA's contribution to modern astronomy.Through an interface available on the World Wide Web at http://adf.gsfc.nasa.gov/adf/adf.html one may view the images that appear on the poster, read the poster captions, and locate the archived data and references.


2011 ◽  
Vol 7 (S285) ◽  
pp. 41-46 ◽  
Author(s):  
Neil Gehrels ◽  
Scott D. Barthelmy ◽  
John K. Cannizzo

AbstractThe dynamic transient gamma-ray sky is revealing many interesting results, largely due to findings by Fermi and Swift. The list includes new twists on gamma-ray bursts (GRBs), a GeV flare from a symbiotic star, GeV flares from the Crab Nebula, high-energy emission from novae and supernovae, and, within the last year, a new type of object discovered by Swift—a jetted tidal disruption event. In this review we present highlights of these exciting discoveries. A new mission concept called Lobster is also described; it would monitor the X-ray sky at order-of-magnitude higher sensitivity than current missions can.


2008 ◽  
Vol 17 (09) ◽  
pp. 1343-1349 ◽  
Author(s):  
S. D. VERGANI ◽  
D. MALESANI ◽  
E. MOLINARI

We present observations of the early afterglow emission of GRB 060418. Thanks to the simultaneous coverage at optical, X-ray and gamma-ray wavelengths, we can detect and separate the external shock emission (visible in the optical and late X-ray data) and the central engine activity (early X and gamma rays). The two components are clearly distinguished based on temporal and spectral properties. The detection of the afterglow onset (in the optical) allows the determination of the fundamental fireball properties, namely its bulk Lorentz factor and total energy. The early time X-ray flare closely resembles the prompt emission gamma-ray pulses in its temporal profile, being wider at low energies and showing lags between the hard and soft bands. This provides a strong suggestion that X-ray flares are a continuation of the prompt emission.


2020 ◽  
Vol 494 (4) ◽  
pp. 5259-5269 ◽  
Author(s):  
Ryo Yamazaki ◽  
Yuri Sato ◽  
Takanori Sakamoto ◽  
Motoko Serino

ABSTRACT The nature of the shallow decay phase in the X-ray afterglow of the gamma-ray burst (GRB) is not yet clarified. We analyse the data of early X-ray afterglows of 26 GRBs triggered by Burst Alert Telescope onboard Neil Gehrels Swift Observatory and subsequently detected by Fermi Large Area Telescope (LAT) and/or Imaging Atmospheric Cherenkov Telescopes. It is found that nine events (including two out of three very-high-energy gamma-ray events) have no shallow decay phase and that their X-ray afterglow light curves are well described by single power-law model except for the jet break at later epoch. The rest are fitted by double power-law model and have a break in the early epoch (around ks), however, eight events (including a very-high-energy gamma-ray event) have the pre-break decay index larger than 0.7. We also analyse the data of well-sampled X-ray afterglows of GRBs without LAT detection and compare their decay properties with those of high-energy and very-high-energy gamma-ray events. It is found that for the GeV/TeV bursts, the fraction of events whose X-ray afterglows are described by single power law is significantly larger than those for non-GeV/TeV GRBs. Even if the GeV/TeV GRBs have shallow decay phase, their decay slope tends to be steeper than non-GeV/TeV bursts, that is, they have less noticeable shallow decay phase in the early X-ray afterglow. A possible interpretation along with the energy injection model is briefly discussed.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Hiromasa Suzuki ◽  
Aya Bamba ◽  
Ryo Yamazaki ◽  
Yutaka Ohira

Abstract In the current decade, GeV/TeV gamma-ray observations of several supernova remnants (SNRs) have implied that accelerated particles are escaping from their acceleration sites. However, when and how they escape from the SNR vicinities are yet to be understood. Recent studies have suggested that the particle escape might develop with thermal plasma ages of the SNRs. We present a systematic study on the time evolution of particle escape using thermal X-ray properties and gamma-ray spectra using 38 SNRs associated with GeV/TeV gamma-ray emissions. We conducted spectral fittings on the gamma-ray spectra using exponential cutoff power-law and broken power-law models to estimate the exponential cutoff or the break energies, both of which are indicators of particle escape. Plots of the gamma-ray cutoff/break energies over the plasma ages show similar tendencies to those predicted by analytical/numerical calculations of particle escape under conditions in which a shock is interacting with thin interstellar medium or clouds. The particle escape timescale is estimated as ∼100 kyr from the decreasing trends of the total energy of the confined protons with the plasma age. The large dispersions of the cutoff/break energies in the data may suggest an intrinsic variety of particle escape environments. This might be the cause of the complicated Galactic cosmic ray spectral shape measured on Earth.


2012 ◽  
Vol 8 (S291) ◽  
pp. 389-391 ◽  
Author(s):  
P. Gentile ◽  
M. McLaughlin ◽  
M. Roberts ◽  
F. Camilo ◽  
J. Hessels ◽  
...  

AbstractWe describe the first X-ray observations of binary millisecond pulsars PSR J0023+0923, J1810+1744, J2215+5135, and J2256−1024. All are Fermi gamma-ray sources and three are ‘black-widow’ pulsars, with companions of mass < 0.1 M⊙. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. PSRs J2215+5135 and J2256−1024, show significant orbital variability and X-ray flux minima coinciding with eclipses seen at radio wavelengths. This is consistent with intrabinary shock emission characteristic of black-widow pulsars. The other two pulsars, PSRs J0023+0923 and J1810+1744, do not demonstrate significant variability, but are fainter than the other two sources. Spectral fits yield power-law indices that range from 1.4 to 2.3 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component (41% of counts are above 2 keV), which is additional evidence for the presence of intrabinary shock emission.


Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Yusong Hou ◽  
Jianguo Jiang ◽  
J. Wu

Anomalous dispersion of solute in porous media can be explained by the power-law distribution of waiting time of solute particles. In this paper, we simulate the diffusion of nonreactive tracer in dead-end pores to explore the waiting time distributions. The distributions of waiting time in different dead-end pores show similar power-law decline at early time and transit to an exponential decline in the end. The transition time between these two decline modes increases with the lengths of dead-end pores. It is well known that power-law distributions of waiting time may lead to anomalous (non-Fickian) dispersion. Therefore, anomalous dispersion is highly dependent on the sizes of immobile zones. According to the power-law decline, we can directly get the power index from the structure of dead-end pores, which can be used to judge the anomalous degree of solute transport in advance.


Sign in / Sign up

Export Citation Format

Share Document