scholarly journals VLT/MUSE and ATCA Observations of the Host Galaxy of the Short GRB 080905A at z = 0.122

2021 ◽  
Vol 923 (1) ◽  
pp. 38
Author(s):  
A. M. Nicuesa Guelbenzu ◽  
S. Klose ◽  
P. Schady ◽  
K. Belczynski ◽  
D. H. Hartmann ◽  
...  

Abstract Short-GRB progenitors could come in various flavors, depending on the nature of the merging compact stellar objects (including a stellar-mass black hole or not) or depending on their ages (millions or billions of years). At a redshift of z = 0.122, the nearly face-on spiral host of the short GRB 080905A is one of the closest short-GRB host galaxies identified so far. This made it a preferred target to explore spatially resolved star formation and to investigate the afterglow position in the context of its star formation structures. We used VLT/MUSE integral-field unit observations, supplemented by ATCA 5.5/9.0 GHz radio-continuum measurements and publicly available HST data, to study the star formation activity in the GRB 080905A host galaxy. The MUSE observations reveal that the entire host is characterized by strong line emission. Using the Hα line flux, we measure for the entire galaxy an SFR of about 1.6 M ⊙ yr−1, consistent with its non-detection by ATCA. Several individual star-forming regions are scattered across the host. The most luminous region has a Hα luminosity that is nearly four times as high as the luminosity of the Tarantula nebula in the Large Magellanic Cloud. Even though star-forming activity can be traced as close to about 3 kpc (in projection) distance to the GRB explosion site, stellar population synthesis calculations show that none of the Hα-bright star-forming regions is a likely birthplace of the short-GRB progenitor.

1987 ◽  
Vol 115 ◽  
pp. 521-533
Author(s):  
J. V. Feitzinger

Methods used in pattern recognition and cluster analysis are applied to investigate the spatial distribution of the star forming regions. The fractal dimension of these structures is deduced. The new 21 cm, radio continuum (1.4 GHz) and IRAS surveys reveal scale structures of 700 pc to 1500 pc being identical with the optically identified star forming sites. The morphological structures delineated by young stars reflect physical parameters which determine the star formation in this galaxy. The formation of spiral arm filaments is understandable by stochastic selfpropagating star formation processes.


2013 ◽  
Vol 9 (S296) ◽  
pp. 121-125
Author(s):  
Joseph P Anderson

AbstractWe present progenitor mass constraints on supernovae (SNe), from correlations with star-forming regions within host galaxies. Through a pixel statistics method used together with H-alpha imaging of host galaxies, we present a progenitor mass sequence running from supernovae type Ia (SNIa) arising from the lowest, through SNII, SNIb, and finally SNIc arising from the highest mass progenitors, implied from an increasing association of their explosion sites with star formation (SF). We also present constraints on the various core-collapse (CC) sub-types, finding the perhaps surprising result that SNIIn show the lowest degree of association with SF of any CC type, implying relatively low-mass progenitors. Finally, we compare the SNIIn environment distribution to that of SNIa, posing the provocative question that additional SNIIn may be linked to the SNIa phenomenon where the latter's spectra are hidden beneath that of circumstellar material (CSM) interaction.


2019 ◽  
Vol 486 (3) ◽  
pp. 3350-3367 ◽  
Author(s):  
Dinalva A Sales ◽  
A Robinson ◽  
R A Riffel ◽  
T Storchi-Bergmann ◽  
J F Gallimore ◽  
...  

AbstractWe present a multiwavelength study of the OH megamaser galaxy IRAS17526 + 3253, based on new Gemini multi-object spectrograph integral field unit (GMOS/IFU) observations, Hubble Space Telescope F814W, and H α + [N ii] images, and archival 2MASS and 1.49 GHz VLA data. The Hubble Space Telescope(HST) images clearly reveal a mid-to-advanced stage major merger whose northwestern and southeastern nuclei have a projected separation of ∼8.5 kpc. Our HST/H α + [N ii] image shows regions of ongoing star formation across the envelope on ∼10 kpc scales, which are aligned with radio features, supporting the interpretation that the radio emission originates from star-forming regions. The measured H α luminosities imply that the unobscured star formation rate (SFR) is ∼10–30 M⊙ yr−1. The GMOS/IFU data reveal two structures in northwestern separated by 850 pc and by a discontinuity in the velocity field of ∼ 200 km s−1. We associate the blueshifted and redshifted components with, respectively, the distorted disc of northwestern and tidal debris, possibly a tail originating in southeastern. Star formation is the main ionization source in both components, which have SFRs of ∼2.6–7.9 M⊙ yr−1 and ∼1.5–4.5 M⊙ yr−1, respectively. Fainter line emission bordering these main components is consistent with shock ionization at a velocity ∼200 km s−1 and may be the result of an interaction between the tidal tail and the northwestern galaxy’s disc. IRAS17526 + 3253 is one of only a few systems known to host both luminous OH and H2O masers. The velocities of the OH and H2O maser lines suggest that they are associated with the northwestern and southeastern galaxies, respectively (Martin et al.; Wagner).


2020 ◽  
Vol 494 (4) ◽  
pp. 4751-4770 ◽  
Author(s):  
Mallory Molina ◽  
Nikhil Ajgaonkar ◽  
Renbin Yan ◽  
Robin Ciardullo ◽  
Caryl Gronwall ◽  
...  

ABSTRACT The attenuation of light from star-forming galaxies is correlated with a multitude of physical parameters including star formation rate, metallicity and total dust content. This variation in attenuation is even more evident on kiloparsec scales, which is the relevant size for many current spectroscopic integral field unit surveys. To understand the cause of this variation, we present and analyse Swift/UVOT near-UV (NUV) images and SDSS/MaNGA emission-line maps of 29 nearby (z < 0.084) star-forming galaxies. We resolve kiloparsec-sized star-forming regions within the galaxies and compare their optical nebular attenuation (i.e. the Balmer emission line optical depth, $\tau ^{l}_{B}\equiv \tau _{\textrm {H}\beta }-\tau _{\textrm {H}\alpha }$) and NUV stellar continuum attenuation (via the NUV power-law index, β) to the attenuation law described by Battisti et al. We show the data agree with that model, albeit with significant scatter. We explore the dependence of the scatter of the β–$\tau ^{l}_{B}$ measurements from the star-forming regions on different physical parameters, including distance from the nucleus, star formation rate and total dust content. Finally, we compare the measured $\tau ^{l}_{B}$ and β values for the individual star-forming regions with those of the integrated galaxy light. We find a strong variation in β between the kiloparsec scale and the larger galaxy scale that is not seen in $\tau ^{l}_{B}$. We conclude that the sightline dependence of UV attenuation and the reddening of β due to the light from older stellar populations could contribute to the scatter in the β–$\tau ^{l}_{B}$ relation.


2019 ◽  
Vol 621 ◽  
pp. A62 ◽  
Author(s):  
Yoko Okada ◽  
Rolf Güsten ◽  
Miguel Angel Requena-Torres ◽  
Markus Röllig ◽  
Jürgen Stutzki ◽  
...  

Aims. The aim of our study is to investigate the physical properties of the star-forming interstellar medium (ISM) in the Large Magellanic Cloud (LMC) by separating the origin of the emission lines spatially and spectrally. The LMC provides a unique local template to bridge studies in the Galaxy and high redshift galaxies because of its low metallicity and proximity, enabling us to study the detailed physics of the ISM in spatially resolved individual star-forming regions. Following Okada et al. (Okada, Y., Requena-Torres, M. A., Güsten, R., et al. 2015, A&A, 580, A54), we investigate different phases of the ISM traced by carbon-bearing species in four star-forming regions in the LMC, and model the physical properties using the KOSMA-τ PDR model. Methods. We mapped 3–13 arcmin2 areas in 30 Dor, N158, N160, and N159 along the molecular ridge of the LMC in [C II] 158 μm with GREAT on board SOFIA. We also observed the same area with CO(2-1) to (6-5), 13CO(2-1) and (3-2), [C I] 3P1–3P0 and 3P2–3P1 with APEX. For selected positions in N159 and 30 Dor, we observed [O I] 145 μm and [O I] 63 μm with upGREAT. All spectra are velocity resolved. Results. In all four star-forming regions, the line profiles of CO, 13CO, and [C I] emission are similar, being reproduced by a combination of Gaussian profiles defined by CO(3-2), whereas [C II] typically shows wider line profiles or an additional velocity component. At several positions in N159 and 30 Dor, we observed the velocity-resolved [O I] 145 and 63 μm lines for the first time. At some positions, the [O I] line profiles match those of CO, at other positions they are more similar to the [C II] profiles. We interpret the different line profiles of CO, [C II] and [O I] as contributions from spatially separated clouds and/or clouds in different physical phases, which give different line ratios depending on their physical properties. We modeled the emission from the CO, [C I], [C II], and [O I] lines and the far-infrared continuum emission using the latest KOSMA-τ PDR model, which treats the dust-related physics consistently and computes the dust continuum SED together with the line emission of the chemical species. We find that the line and continuum emissions are not well-reproduced by a single clump ensemble. Toward the CO peak at N159 W, we propose a scenario that the CO, [C II], and [O I] 63 μm emission are weaker than expected because of mutual shielding among clumps.


2014 ◽  
Vol 10 (S309) ◽  
pp. 239-242
Author(s):  
Giovanni Cresci

AbstractQuasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation, preventing massive galaxies to over-grow and producing the red colors of ellipticals. On the other hand, some models are also requiring ‘positive’ AGN feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively-driven winds are available. We present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z=1.59 QSO, in which we clearly resolve a fast (1500 km/s) and extended (up to 13 kpc from the black hole) outflow in the [OIII] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U band flux show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy (‘negative feedback’), but also triggering star formation by outflow induced pressure at the edges (‘positive feedback’). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.


2006 ◽  
Vol 2 (S235) ◽  
pp. 312-312
Author(s):  
Bunyo Hatsukade ◽  
Kotaro Kohno ◽  
Akira Endo ◽  
Tomoka Tosaki ◽  
Kouji Ohta ◽  
...  

AbstractLong-duration gamma-ray bursts (GRBs) are considered to be due to the death of massive stars. Therefore, GRBs are closely associated with the star formation of host galaxies. Since GRBs can be detected at cosmological distances, they are expected to be probes of the star formation history of the Universe. In order to determine the use of GRBs, it is essential to understand the star formation of their hosts. Multi-wavelength observations have shown that the star formation rates (SFRs) of GRB hosts derived from submillimeter/radio observations are generally higher than those from optical/UV observations (Berger et al. 2003). This implies that GRB hosts have a large amount of molecular gas and massive star formation obscured by dust. In order to solve this problem, it is necessary to derive the SFRs in a method which is independent of existing methods and not affected by dust extinction.We observed 12CO (J = 3–2) line emission from the host galaxy of GRB 980425 using the Atacama Submillimeter Telescope Experiment (ASTE). Five points were observed covering the entire region of the galaxy, and we find possible emission features (S/N ~ 3 σ) at the velocity range corresponding to the redshift of the galaxy. By combining all spectra of five points, we obtain a global spectrum with a ~4 σ emission feature. If the features are real, this is the first detection of CO among GRB hosts. We derive the total gas mass of M(H2)=7 ± 2× 108M⊙ assuming a CO-to-H2 conversion factor of αCO = 8.0M⊙ (K km s−1 pc2)−1, which is deduced using the correlation between the αCO and the metallicity. The dynamical mass is calculated to be Mdyn=2× 1010M⊙, and M(H2)/Mdyn~3% is consistent with those of nearby dwarfs and normal spirals. The derived SFR is 0.5 ± 0.1 M⊙ yr−1 based on the Schmidt law. This SFR agrees with the results of previous Hα observations, suggesting that there is no significant obscured star formation in this host galaxy. This result implies that there is a variety of GRB hosts in terms of the presence of obscured star formation.


Author(s):  
Joseph P. Anderson ◽  
Phil A. James ◽  
Stacey M. Habergham ◽  
Lluís Galbany ◽  
Hanindyo Kuncarayakti

AbstractMapping the diversity of SNe to progenitor properties is key to our understanding of stellar evolution and explosive stellar death. Investigations of the immediate environments of SNe allow statistical constraints to be made on progenitor properties such as mass and metallicity. Here, we review the progress that has been made in this field. Pixel statistics using tracers of e.g. star formation within galaxies show intriguing differences in the explosion sites of, in particular SNe types II and Ibc (SNe II and SNe Ibc respectively), suggesting statistical differences in population ages. Of particular interest is that SNe Ic are significantly more associated with host galaxy Hα emission than SNe Ib, implying shorter lifetimes for the former. In addition, such studies have shown (unexpectedly) that the interacting SNe IIn do not explode in regions containing the most massive stars, which suggests that at least a significant fraction of their progenitors arise from the lower end of the core-collapse SN mass range. Host H ii region spectroscopy has been obtained for a significant number of core-collapse events, however definitive conclusions on differences between distinct SN types have to-date been elusive. Single stellar evolution models predict that the relative fraction of SNe Ibc to SNe II should increase with increasing metallicity, due to the dependence of mass-loss rates on progenitor metallicity. We present a meta-analysis of all current host H ii region oxygen abundances for CC SNe. It is concluded that the SN II to SN Ibc ratio shows little variation with oxygen abundance, with only a suggestion that the ratio increases in the lowest bin. Radial distributions of different SNe are discussed, where a central excess of SNe Ibc has been observed within disturbed galaxy systems, which is difficult to ascribe to metallicity or selection effects. Environment studies are also being undertaken for SNe Ia, where constraints can be made on the shortest delay times of progenitor systems. It is shown that ‘redder’ SNe Ia are more often found within star-forming regions. Environment studies are evolving to enable studies at higher spatial resolutions than previously possible, while in addition the advent of wide-field integral field unit instruments allows galaxy-wide spectral analyses which will provide fruitful results to this field. Some example contemporary results are shown in that direction.


2020 ◽  
Vol 496 (3) ◽  
pp. 2821-2835 ◽  
Author(s):  
Tie Liu ◽  
Neal J Evans ◽  
Kee-Tae Kim ◽  
Paul F Goldsmith ◽  
Sheng-Yuan Liu ◽  
...  

ABSTRACT We report studies of the relationships between the total bolometric luminosity (Lbol or LTIR) and the molecular line luminosities of J = 1 − 0 transitions of H13CN, H13CO+, HCN, and HCO+ with data obtained from ACA observations in the ‘ATOMS’ survey of 146 active Galactic star-forming regions. The correlations between Lbol and molecular line luminosities $L^{\prime }_{\rm mol}$ of the four transitions all appear to be approximately linear. Line emission of isotopologues shows as large scatters in Lbol–$L^{\prime }_{\rm mol}$ relations as their main line emission. The log(Lbol/$L^{\prime }_{\rm mol}$) for different molecular line tracers have similar distributions. The Lbol-to-$L^{\prime }_{\rm mol}$ ratios do not change with galactocentric distances (RGC) and clump masses (Mclump). The molecular line luminosity ratios (HCN-to-HCO+, H13CN-to-H13CO+, HCN-to-H13CN, and HCO+-to-H13CO+) all appear constant against Lbol, dust temperature (Td), Mclump, and RGC. Our studies suggest that both the main lines and isotopologue lines are good tracers of the total masses of dense gas in Galactic molecular clumps. The large optical depths of main lines do not affect the interpretation of the slopes in star formation relations. We find that the mean star formation efficiency (SFE) of massive Galactic clumps in the ‘ATOMS’ survey is reasonably consistent with other measures of the SFE for dense gas, even those using very different tracers or examining very different spatial scales.


2006 ◽  
Vol 2 (S235) ◽  
pp. 311-311
Author(s):  
I. Gonidakis ◽  
E. Livanou ◽  
E. Kontizas ◽  
U. Klein ◽  
M. Kontizas ◽  
...  

AbstractSMC has been going through an active star formation epoch, especially during the last 0.2 Gyr when the close encounter with the LMC occured. Our goal is to detect regions dominated by early-type stars and gas and examine their behaviour at different wavelengths. Spectral energy distributions, a colour-magnitude diagram and a two-colour diagram from IRAS data (Bontekoe, Koperet & Kester (1994); Bontekoe, Kester, Stanimirović, et al. (1999)) for these regions were used in order to compare their properties with those of starburst galaxies (Helou (1986); Lehnert & Heckman (1995)). We have selected 50 stellar complexes with increased 100-μm IRAS flux, with detetected emission in all IRAS bands and/or high concentration of young stars. Ranking them by size (Maragoudaki, Kontizas, Kontizas, et al. (1998)), a total of what we call 24 aggregates, 23 complexes and 3 super-complexes were found. Radio continuum maps at 8.6-GHz (Haynes, Murray, Klein, et al. (1986)) and the CO (1→0) line (Mizuno, Rubio, Mizuno, et al. (2001)) were also correlated with the map of the complexes. Only 8 of them show enhanced star formation activity according to their IR properties and 8.6-GHz map, however, none of them resembles the IR behaviour of starburst regions found in the LMC and starburst galaxies (Livanou, Kontizas, Gonidakis, et al. (2006)). The south-west part of the “bar” has the most diverse intensity of star formation, with CO emission coincident with the largest structure. In the north-eastern end of the “bar”, star formation is likely to have commenced in the recent past, with molecular gas being abundant in this region. Ongoing and future star formation are revealed in the wing, while it appears to have ceased in the central “bar”.


Sign in / Sign up

Export Citation Format

Share Document