scholarly journals Chromospheric Activity of M Stars Based on LAMOST Low- and Medium-resolution Spectral Surveys

2021 ◽  
Vol 253 (1) ◽  
pp. 19
Author(s):  
Li-yun Zhang ◽  
Gang Meng ◽  
Liu Long ◽  
Jianrong Shi ◽  
Ming Zhong ◽  
...  
1989 ◽  
Vol 106 ◽  
pp. 367-367
Author(s):  
Ian Griffin ◽  
C.J. Skinner ◽  
B.R. Whitmore

We present near IR (H, K and L band) medium resolution (ƛ/Δƛ ∼ 600) spectra for a selection of 9 red giants which have previously been shown to exhibit anomalous dust emission as characterised by their IRAS LRS spectra. The objects observed (during UKIRT and AAT service time) include Carbon stars whose LRS spectra show the 9.7μm silicate feature and also M stars whose LRS spectra display an 11.3μm feature similar to that usually associated with emission from SiC dust grains.


1979 ◽  
Vol 47 ◽  
pp. 239-246
Author(s):  
J. R. Mould

AbstractThe need for establishing classification criteria at long wavelengths is stressed. The usefulness of doing this is illustrated with a discussion of the composite spectra of FU Orionis stars. Spectra of these pre-main-sequence stars from 1.5-2.5μ were obtained with a Fourier Transform Spectrometer. Luminosity criteria in the l-2μ range are also discussed with application to M stars.


2021 ◽  
Vol 253 (2) ◽  
pp. 51
Author(s):  
Liu Long ◽  
Li-yun Zhang ◽  
Shao-Lan Bi ◽  
Jianrong Shi ◽  
Hong-Peng Lu ◽  
...  

2020 ◽  
Vol 495 (1) ◽  
pp. 1252-1270 ◽  
Author(s):  
Li-yun Zhang ◽  
Liu Long ◽  
Jianrong Shi ◽  
Hong-peng Lu ◽  
Qi Gao ◽  
...  

ABSTRACT Stellar magnetic activity is an interesting phenomenon in late-type stars. We use the medium-resolution spectroscopic observations of 406 069 late-type stars from LAMOST to explore their properties. We perform a statistical analysis on the magnetic activity of the stars and their associated physical parameters. Our samples are cross-matched with other data bases (LAMOST DR5, VSX, and SDSS DR12) to obtain additional observational properties. The equivalent widths (EWs) of Hα lines, an indicator of chromospheric activity, are calculated. According to the EWs of the Hα line, we detect 8816 spectra with apparent Hα emission for a total of 2115 stars among the 2 108 565 spectra analysed. Furthermore, 1521 of these stars show variability in their Hα lines. In addition, we detect 2132 flare events associated with 41 542 stars from the catalogue by cross-matching our LAMOST medium-resolution samples and the Kepler and K2 data bases. We also confirm a weak relationship of the flare amplitude with increasing Rossby number. There is a clear decease in the strength of chromospheric activity (LHα/Lbol) with increasing rotation period. Moreover, the ratio of the flare energy and stellar luminosity is found to decrease with the stellar mass.


2012 ◽  
Vol 8 (S294) ◽  
pp. 209-210 ◽  
Author(s):  
Liyun Zhang ◽  
Jianrong Shi ◽  
Jingkun Zhao ◽  
Ali Luo ◽  
Guoyin Zhang ◽  
...  

AbstractWe introduced our preliminary results of chromospheric activity of late-type stars based on the stellar spectrum of the pilot survey of the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST, also called Guo Shou Jing telescope). We have found 1151 active M stars from 17471 M samples using the chromospheric active indicator of the Hα line.


1989 ◽  
Vol 97 ◽  
pp. 891 ◽  
Author(s):  
William Herbst ◽  
Jeffrey R. Miller

1966 ◽  
Vol 24 ◽  
pp. 40-43
Author(s):  
O. C. Wilson ◽  
A. Skumanich

Evidence previously presented by one of the authors (1) suggests strongly that chromospheric activity decreases with age in main sequence stars. This tentative conclusion rests principally upon a comparison of the members of large clusters (Hyades, Praesepe, Pleiades) with non-cluster objects in the general field, including the Sun. It is at least conceivable, however, that cluster and non-cluster stars might differ in some fundamental fashion which could influence the degree of chromospheric activity, and that the observed differences in chromospheric activity would then be attributable to the circumstances of stellar origin rather than to age.


Author(s):  
J. S. Shah ◽  
R. Durkin ◽  
A. N. Farley

It is now possible to perform High Pressure Scanning Electron Microscopy (HPSEM) in the range 10 to 2000 Pa. Here the effect of scattering on resolution has been evaluated by calculating the profile of the beam in high pressure and assessing its effect on the image contrast . An experimental scheme is presented to show that the effect of the primary beam ionization is to reduce image contrast but this effect can be eliminated by a novel use of specimen current detection in the presence of an electric field. The mechanism of image enhancement is discussed in terms of collection of additional carriers generated by the emissive components.High Pressure SEM (HPSEM) instrumentation is establishing itself as commercially viable. There are now a number of manufacturers, such as JEOL, ABT, ESCAN, DEBEN RESEARCH, selling microscopes and accessories for HPSEM. This is because high pressure techniques have begun to yield high quality micrographs at medium resolution.To study the effect of scattering on the incident electron beam, its profile - in a high pressure environment - was evaluated by calculating the elastic and inelastic scattering cross sections for nitrogen in the energy range 5-25 keV. To assess the effect of the scattered beam on the image contrast, the modification of a sharp step contrast function due to scattering was calculated by single scattering approximation and experimentally confirmed for a 20kV accelerated beam.


Universe ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 88
Author(s):  
Jonathan H. Jiang ◽  
Daniel Zhao ◽  
Xuan Ji ◽  
Bohan Xie ◽  
Kristen A. Fahy

The growing database of exoplanets has shown us the statistical characteristics of various exoplanet populations, providing insight towards their origins. Observational evidence suggests that the process by which gas giants are conceived in the stellar disk may be disparate from that of smaller planets. Using NASA’s Exoplanet Archive, we analyzed the relationships between planet mass and stellar metallicity, as well as planet mass and stellar mass for low-mass exoplanets (MP < 0.13 MJ) orbiting spectral class G, K, and M stars. We performed further uncertainty analysis to confirm that the exponential law relationships found between the planet mass, stellar mass, and the stellar metallicity cannot be fully explained by observation biases alone.


Sign in / Sign up

Export Citation Format

Share Document