scholarly journals ORIGIN OF MOLECULAR OXYGEN IN COMET 67P/CHURYUMOV–GERASIMENKO

2016 ◽  
Vol 823 (2) ◽  
pp. L41 ◽  
Author(s):  
O. Mousis ◽  
T. Ronnet ◽  
B. Brugger ◽  
O. Ozgurel ◽  
F. Pauzat ◽  
...  
Keyword(s):  
Nature ◽  
2015 ◽  
Vol 526 (7575) ◽  
pp. 678-681 ◽  
Author(s):  
A. Bieler ◽  
K. Altwegg ◽  
H. Balsiger ◽  
A. Bar-Nun ◽  
J.-J. Berthelier ◽  
...  
Keyword(s):  

2018 ◽  
Vol 618 ◽  
pp. A11 ◽  
Author(s):  
V. Taquet ◽  
E. F. van Dishoeck ◽  
M. Swayne ◽  
D. Harsono ◽  
J. K. Jørgensen ◽  
...  

Recent measurements carried out at comet 67P/Churyumov–Gerasimenko (67P) with the Rosetta probe revealed that molecular oxygen, O2, is the fourth most abundant molecule in comets. Models show that O2 is likely of primordial nature, coming from the interstellar cloud from which our solar system was formed. However, gaseous O2 is an elusive molecule in the interstellar medium with only one detection towards quiescent molecular clouds, in the ρ Oph A core. We perform a deep search for molecular oxygen, through the 21−01 rotational transition at 234 GHz of its 16O18O isotopologue, towards the warm compact gas surrounding the nearby Class 0 protostar IRAS 16293–2422 B with the ALMA interferometer. We also look for the chemical daughters of O2, HO2, and H2O2. Unfortunately, the H2O2 rotational transition is dominated by ethylene oxide c-C2H4O while HO2 is not detected. The targeted 16O18O transition is surrounded by two brighter transitions at ± 1 km s−1 relative to the expected 16O18O transition frequency. After subtraction of these two transitions, residual emission at a 3σ level remains, but with a velocity offset of 0.3−0.5 km s−1 relative to the source velocity, rendering the detection “tentative”. We derive the O2 column density for two excitation temperatures Tex of 125 and 300 K, as indicated by other molecules, in order to compare the O2 abundance between IRAS 16293 and comet 67P. Assuming that 16O18O is not detected and using methanol CH3OH as a reference species, we obtain a [O2]/[CH3OH] abundance ratio lower than 2−5, depending on the assumed Tex, a three to four times lower abundance than the [O2]/[CH3OH] ratio of 5−15 found in comet 67P. Such a low O2 abundance could be explained by the lower temperature of the dense cloud precursor of IRAS 16293 with respect to the one at the origin of our solar system that prevented efficient formation of O2 in interstellar ices.


2018 ◽  
Vol 864 (1) ◽  
pp. 9 ◽  
Author(s):  
Alexis Bouquet ◽  
Olivier Mousis ◽  
Benjamin Teolis ◽  
Georgios Nicolaou ◽  
Ozge Ozgurel ◽  
...  
Keyword(s):  

2015 ◽  
Vol 60 (1) ◽  
pp. 46-51 ◽  
Author(s):  
I.P. Koval ◽  
◽  
Yu.A. Len ◽  
M.G. Nakhodkin ◽  
M.O. Svishevs’kyi ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Alexander Giovannitti ◽  
Reem B. Rashid ◽  
Quentin Thiburce ◽  
Bryan D. Paulsen ◽  
Camila Cendra ◽  
...  

<p>Avoiding faradaic side reactions during the operation of electrochemical devices is important to enhance the device stability, to achieve low power consumption, and to prevent the formation of reactive side‑products. This is particularly important for bioelectronic devices which are designed to operate in biological systems. While redox‑active materials based on conducting and semiconducting polymers represent an exciting class of materials for bioelectronic devices, they are susceptible to electrochemical side‑reactions with molecular oxygen during device operation. We show that this electrochemical side reaction yields hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), a reactive side‑product, which may be harmful to the local biological environment and may also accelerate device degradation. We report a design strategy for the development of redox-active organic semiconductors based on donor-acceptor copolymers that prevent the formation of H<sub>2</sub>O<sub>2</sub> during device operation. This study elucidates the previously overlooked side-reactions between redox-active conjugated polymers and molecular oxygen in electrochemical devices for bioelectronics, which is critical for the operation of electrolyte‑gated devices in application-relevant environments.</p>


2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


Sign in / Sign up

Export Citation Format

Share Document