Unsteady Temperature Characterization in the Separated Shear Layer over a Spiked Cylinder in Hypersonic Flow

Author(s):  
Sneh Deep ◽  
Gopalan Jagadeesh
2013 ◽  
Vol 136 (5) ◽  
Author(s):  
Chiara Bernardini ◽  
Stuart I. Benton ◽  
Jen-Ping Chen ◽  
Jeffrey P. Bons

The mechanism of separation control by sound excitation is investigated on the aft-loaded low-pressure turbine (LPT) blade profile, the L1A, which experiences a large boundary layer separation at low Reynolds numbers. Previous work by the authors has shown that on a laminar separation bubble such as that experienced by the front-loaded L2F profile, sound excitation control has its best performance at the most unstable frequency of the shear layer due to the exploitation of the linear instability mechanism. The different loading distribution on the L1A increases the distance of the separated shear layer from the wall and the exploitation of the same linear mechanism is no longer effective in these conditions. However, significant control authority is found in the range of the first subharmonic of the natural unstable frequency. The amplitude of forced excitation required for significant wake loss reduction is higher than that needed when exploiting linear instability, but unlike the latter case, no threshold amplitude is found. The fluid-dynamics mechanisms under these conditions are investigated by particle image velocimetry (PIV) measurements. Phase-locked PIV data gives insight into the growth and development of structures as they are shed from the shear layer and merge to lock into the excited frequency. Unlike near-wall laminar separation sound control, it is found that when such large separated shear layers occur, sound excitation at subharmonics of the fundamental frequency is still effective with high-Tu levels.


2017 ◽  
Vol 826 ◽  
pp. 851-887 ◽  
Author(s):  
Francesco Stella ◽  
Nicolas Mazellier ◽  
Azeddine Kourta

We report an experimental investigation of the separating/reattaching flow over a descending ramp with a $25^{\circ }$ expansion angle. Emphasis is given to mass entrainment through the boundaries of the separated shear layer emanating from the upper edge of the ramp. For this purpose, the turbulent/non-turbulent interface and the separation line inferred from image-based analysis are used respectively to mark the upper and lower bounds of the separated shear layer. The main objective of this study is to identify the physical parameters that scale the development of the separated shear layer, by giving a specific emphasis to the investigation of mass entrainment. Our results emphasise the multiscale nature of mass entrainment through the separated shear layer. The recirculation length $L_{R}$, step height $h$ and free-stream velocity $U_{\infty }$ are the dominant scales that organise the separated flow (and related large-scale quantities as pressure distribution or shear layer growth rate) and set mean mass fluxes. However, local viscous mechanisms seem to be responsible for most of local mass entrainment. Furthermore, it is shown that large-scale mass entrainment is driven by incoming boundary layer properties, since $L_{R}$ scales with $Re_{\unicode[STIX]{x1D703}}$, and in particular by its turbulent state. Surprisingly, the relationships evidenced in this study suggest that these dependencies are established over a large distance upstream of separation and that they might also extend to small scales, at which viscous entrainment is dominant. If confirmed by additional studies, our findings would open new perspectives for designing effective separation control systems.


1989 ◽  
Vol 111 (4) ◽  
pp. 464-471 ◽  
Author(s):  
M. Stieglmeier ◽  
C. Tropea ◽  
N. Weiser ◽  
W. Nitsche

This study examines the flow field in three axisymmetric expansions having diffuser half-angles of 14, 18, and 90 deg, respectively. Velocity measurements were performed at a Reynolds number of Re = 1.56 × 104 using a single component LDA operated in forward scatter. The test facility was refractive index matched, allowing measurement of the velocities U, V, W, u2, v2, w2, uv and uw upstream of, and throughout the entire recirculation region. The results indicate that the diffuser geometry influences the separated shear layer appreciably over the entire length of the diffuser section. The production of turbulence immediately after separation is much higher in the case of the 14 and 18 deg diffuser compared to the 90 deg expansion, leading to higher diffusion rates in the separated shear layer, and hence earlier reattachment of the shear layer.


Author(s):  
Nobuhiko Kamagata ◽  
Susumu Horio ◽  
Koichi Hishida

The active flow control, which can adapt to variation of flow velocity and/or direction, is an effective technique to achieve drag reduction. The present study has investigated a separated shear layer and established two control systems; the system reduces drag force and lift force by controlling the separated shear layer to reattachment for variation of flow velocity and /or direction. The adaptive control system to the variation of flow velocity was constructed by using a hot wire anemometer as a sensor to detect flow separation. The system to flow direction was constructed by using pressure transducers as a sensor to estimate drag force and lift force. The extremum-seeking control was introduced as a controller of the both systems. It is indicated from the experimental results that adaptive drag/lift control system to various flow velocity ranging from 3 to 7 m/s and various flow direction ranging from 0 to 30 deg. was established.


2009 ◽  
Vol 75 (752) ◽  
pp. 676-682
Author(s):  
Katsumi MIYAKOSHI ◽  
Hiroyuki HANIU ◽  
Sangil KIM ◽  
Kazunori TAKAI ◽  
Mohammad Rofiqul ISLAM

Author(s):  
Masaki Yamagishi ◽  
Tomoko Togano ◽  
Shinichi Tashiro

The vortex structures in a separated region are generated by the motion of the separated shear layer caused by the introduction of periodic fluctuation. The main cause of the motion of the separated shear layer is the external fluctuation with the characteristic frequency. In order to investigate the principal motion of the velocity field, phase averaging was conducted to the velocity signals obtained by single hot-wire measurement. In phase averaging, wavelet analysis was applied to obtain the dominant frequency and the characteristic phase in the fluctuation. The profiles and the contours of the phase-averaged velocity could be found and discussed. The profiles vary dynamically at each phase and show the periodic motion of the shear layer. The separated shear layer flutters with the external fluctuation in the mean flow. If the suitable frequency is selected in the external fluctuation, the separated region disappears in almost all each phases owing to the depression of the shear layer near the wall.


Author(s):  
Jeffrey P. Bons ◽  
Jon Pluim ◽  
Kyle Gompertz ◽  
Matthew Bloxham ◽  
John P. Clark

The synchronous application of flow control in the presence of unsteady wakes was studied on a highly-loaded low pressure turbine blade. The L1A blade has a design Zweifel coefficient of 1.34 and a suction peak at 58% axial chord, making it an aft-loaded pressure distribution. Velocity and pressure data were acquired at Rec = 20,000 with 3% incoming freestream turbulence. Unsteady wakes from an upstream vane row are simulated with a moving row of bars at a flow coefficient of 0.76. At this Reynolds number, the blade exhibits a non-reattaching separation bubble beginning at 57% axial chord under steady flow conditions without upstream wakes. The separation zone is modified substantially by the presence of unsteady wakes, producing a smaller separation zone and reducing the area-averaged wake total pressure loss by more than 50%. The wake disturbance accelerates transition in the separated shear layer but stops short of reattaching the flow. Rather, a new time-averaged equilibrium location is established for the separated shear layer, further downstream than without wakes. The focus of this study was the application of pulsed flow control using two spanwise rows of discrete vortex generator jets (VGJs). The VGJs were located at 59% Cx, approximately the peak cp location, and at 72% Cx. The most effective separation control was achieved at the 59% Cx location. Wake total pressure loss decreased 60% from the wake only level and the cp distribution fully recovered its high Reynolds number (attached flow) performance. The VGJ disturbance dominates the dynamics of the separated shear layer, with the wake disturbance assuming a secondary role only. When the pulsed jet actuation (30% duty cycle) was initiated at the 72% Cx location, synchronization with the wake passing frequency (10.6Hz) was key to producing the most effective separation control. A 25% improvement in effectiveness was obtained by aligning the jet actuation between wake events. Evidence suggests that flow control using VGJs will be effective in the highly unsteady LPT environment of an operating gas turbine, provided the VGJ location and amplitude are adapted for the specific blade profile.


Sign in / Sign up

Export Citation Format

Share Document