scholarly journals Optimal fishing mortality assignment for southern hake Merluccius australis in Chile

2020 ◽  
Vol 48 (4) ◽  
pp. 613-625
Author(s):  
Felipe Lopez ◽  
Jorge Jimenez ◽  
Cristian Canales

Since 1979, southern hake (Merluccius australis) has been exploited in Chile from the Bio Bio to the Magallanes regions, between the parallels 41°28.6'S and 57°S. There is evidence of a constant fishing effort and a sustained reduction of the fish population, consistent with a progressive decrease in total annual catches. Management strategies based on the maximum sustainable yield (MSY) and quota assignment/ distribution criteria have not been able to sustain acceptable biomass levels. A non-linear optimization model with two objective functions was proposed to determine an optimal total catch quota for more sustainable exploitation of this fishery. The first function maximizes the total catch over time in response to an optimal assignment of fishing mortality rates per fleet; the second function maximizes the total economic benefit associated with the total catch. The dynamics of the fish population were represented with the equations of a predictive age-structured model. Decision variables were fishing mortality rates and annual catch quotas per fleet, subject to constraints that guarantee a minimum level of biomass escape over a long-term period. The input parameters were obtained from the last stock evaluation report carried out by the Instituto de Fomento Pesquero (IFOP) of Chile. The historical background data of the fishery and the regulatory framework were relevant aspects of the methodology. Five scenarios were evaluated with the two objective functions, including a base scenario, which considered the referential mortality rate as input data as the average mortality rate per fleet from 2007 to 2012. Total economic benefits fluctuate between 102 and USD 442 million for total catches in the range of 108 to 421 thousand tons, which were obtained from maximizing the economic and biological objective functions. Economic benefit/catch ratios were reduced for scenarios with higher constraints on catch limits, and they were more efficient from a biological point of view. Situations with lighter constraints showed in general higher economic benefits and better performance ratios than those with stronger restrictions. The use of optimization models may provide a useful tool to evaluate the effect of regulations for adequate conservation and economical utilization of a limited resource.

1962 ◽  
Vol 19 (4) ◽  
pp. 521-529 ◽  
Author(s):  
Syoiti Tanaka

When a fish population has been depleted by heavy exploitation, with the yield from the population maintaining an unfavourable level, it is usual to expect that the situation will be improved by reduction of fishing effort. Following a sudden reduction of fishing mortality, p, from p1 to p2 at time τ = 0, the yield at once decreases and then increases gradually until it reaches another steady level higher than the former level.The present paper deals, using Baranov's model, with the transition stage of the population following a sudden change in p, as well as with the steady state before and after the change. Relations between equilibrium yield and fishing mortality rate (effort-yield curves) are calculated for various values of the parameters, λ0 (= l0/u, where l0 is the length of a recruit and u is the yearly increase in length), q (natural mortality rate), and b (remaining life span of a fish at the time of recruitment) (Fig. 2). It is noteworthy that for species that grow slowly after recruitment, i.e. when λ0 is large, reduction of fishing would have scarcely any effect on the yield (Fig. 4).Yield curves for the period of transition from the present to various lower levels of fishing are calculated for the case in which λ0 = 4, q = 0.15, b = 10 and p1 = 1.35. These represent parameters for the present state of the stock of sohachi flounders Cleisthenes herzensteini (Schmidt), in the southwestern area of the Japan Sea (Fig. 5).Possible density effects on growth rate and natural mortality rate, which are briefly discussed, appear to diminish considerably the effectiveness of any reduction in fishing effort (Fig. 6).


2006 ◽  
Vol 63 (6) ◽  
pp. 961-968 ◽  
Author(s):  
Joe Horwood ◽  
Carl O'Brien ◽  
Chris Darby

AbstractRecovery of depleted marine, demersal, commercial fish stocks has proved elusive worldwide. As yet, just a few shared or highly migratory stocks have been restored. Here we review the current status of the depleted North Sea cod (Gadus morhua), the scientific advice to managers, and the recovery measures in place. Monitoring the progress of North Sea cod recovery is now hampered by considerable uncertainties in stock assessments associated with low stock size, variable survey indices, and inaccurate catch data. In addition, questions arise as to whether recovery targets are achievable in a changing natural environment. We show that current targets are achievable with fishing mortality rates that are compatible with international agreements even if recruitment levels remain at the current low levels. Furthermore, recent collations of data on international fishing effort have allowed estimation of the cuts in fishing mortality achieved by restrictions on North Sea effort. By the beginning of 2005, these restrictions are estimated to have reduced fishing mortality rates by about 37%. This is insufficient to ensure recovery of North Sea cod within the next decade.


2006 ◽  
Vol 63 (2) ◽  
pp. 321-334 ◽  
Author(s):  
Catherine G.J Michielsens ◽  
Murdoch K McAllister ◽  
Sakari Kuikka ◽  
Tapani Pakarinen ◽  
Lars Karlsson ◽  
...  

A Bayesian state–space mark–recapture model is developed to estimate the exploitation rates of fish stocks caught in mixed-stock fisheries. Expert knowledge and published results on biological parameters, reporting rates of tags and other key parameters, are incorporated into the mark–recapture analysis through elaborations in model structure and the use of informative prior probability distributions for model parameters. Information on related stocks is incorporated through the use of hierarchical structures and parameters that represent differences between the stock in question and related stocks. Fishing mortality rates are modelled using fishing effort data as covariates. A state–space formulation is adopted to account for uncertainties in system dynamics and the observation process. The methodology is applied to wild Atlantic salmon (Salmo salar) stocks from rivers located in the northeastern Baltic Sea that are exploited by a sequence of mixed- and single-stock fisheries. Estimated fishing mortality rates for wild salmon are influenced by prior knowledge about tag reporting rates and salmon biology and, to a limited extent, by prior assumptions about exploitation rates.


1998 ◽  
Vol 55 (6) ◽  
pp. 1466-1476 ◽  
Author(s):  
John M Hoenig ◽  
Nicholas J Barrowman ◽  
William S Hearn ◽  
Kenneth H Pollock

The Brownie models for multiyear tagging studies can be used to estimate age- and year-specific annual survival rates and tag recovery rates. The latter are composites of the exploitation rates and rates of tag reporting, tag shedding, and tag-induced mortality. It is possible to estimate the exploitation rates if the other components of the tag recovery rates can be quantified. Instantaneous rates of fishing and natural mortality can be estimated if information is available on the seasonal distribution of fishing effort. The estimated rates are only moderately dependent on the timing of the fishing; consequently, the relative effort data can be crude. Information on the timing of the catch over the course of the year can be used as a substitute for the effort data. Fishing mortality can also be assumed to be proportional to fishing effort over years; consequently, if fishing effort is known then the tag reporting rate, natural mortality rate, and a single catchability coefficient can be estimated (instead of natural mortality and a series of fishing mortalities). Although it is possible in theory to estimate both the tag reporting rate and the natural mortality rate with all of these models, in practice it appears necessary to obtain some additional data relating to tag reporting rate to obtain acceptable results. The additional data can come from a variable reward tagging study, a creel or port sampling survey, or from tagged animals that are secretly added to the fishers' catches.


2009 ◽  
Vol 60 (6) ◽  
pp. 563 ◽  
Author(s):  
Shijie Zhou ◽  
Shane P. Griffiths ◽  
Margaret Miller

A new sustainability assessment for fishing effects (SAFE) method was used to assess the biological sustainability of 456 teleost bycatch species in Australia’s Northern Prawn Fishery. This method can quantify the effects of fishing on sustainability for large numbers of species with limited data. The fishing mortality rate of each species based on its spatial distribution (estimated from detection/non-detection data) and the catch rate based on fishery-dependent or fishery-independent data were estimated. The sustainability of each species was assessed by two biological reference points approximated from life-history parameters. The point estimates indicated that only two species (but 21 when uncertainty was included) had estimated fishing mortality rates greater than a fishing mortality rate corresponding to the maximum sustainable yield. These two species also had their upper 95% confidence intervals (but not their point estimates) greater than their minimum unsustainable fishing mortality rates. The fact that large numbers of species are sustainable can be attributed mainly to their wide distributions in unfished areas, low catch rates within fished areas and short life spans (high biological productivity). The present study demonstrates how SAFE may be a cost-effective quantitative assessment method to support ecosystem-based fishery management.


1985 ◽  
Vol 27 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Robert A. Desharnais ◽  
David W. Foltz ◽  
E. Zouros

Associations between heterozygosity at one or more electrophoretically detected enzyme loci and growth rate have been reported for several species of plants and animals, including several commercially important species of finfish and shellfish. The general pattern is for heterozygotes to grow faster than homozygotes, although there is some variation in growth response even within a species. Regardless of the physiological or biochemical basis of genotype-dependent growth, polymorphism at a locus affecting growth rate in an overdominant manner may be lost if larger individuals have a greater mortality rate than smaller ones. In an exploited population, mortality of this sort is likely to result from size-selective fishing pressure. Using a continuous-time single-locus model of natural selection, we have related the maintenance of polymorphism at a locus to two measures of fishing effort: β, the legal minimum size below which there is no mortality, and f, an instantaneous mortality rate owing to fishing (above the legal minimum size). We considered two different models of fishing mortality. In model 1, fishing mortality above the legal minimum size is constant; in model 2, fishing mortality is a linear function of size (above β). Numerical analysis of model 1 indicates that maintenance of polymorphism requires either a low rate of fishing mortality or a value of β that is close to zero or close to the maximum attainable size. Analysis of model 2 gives similar results, suggesting that the conclusions are not dependent on the exact form of the mortality function.Key words: heterozygosity, growth, size, mortality.


1998 ◽  
Vol 55 (12) ◽  
pp. 2691-2705 ◽  
Author(s):  
Carl Walters

Losses can be measured as deviations from a desired reference trajectory of quotas that would be taken if there were no uncertainty and are highly dependent on assessments prior to and during development. Simulations of assessment and quota setting under various quota setting rules indicate that variability in relative abundance indices can cause substantial losses, especially considering cumulative effect of early quota errors on later departures of biomass from that needed to produce the desired quotas, even if optimum fishing mortality rate is known in advance. Conservative assessments (low biomass estimates for which there is only a small probability that biomass is actually lower) are favored during development when loss is measured as the relative departure from the best quota for each year. But if loss is measured as absolute departure from the best quota, it is generally better to base the quota on the biomass estimate for which there is nearly a 50% chance that the stock is smaller. Deliberate overfishing (probing) is not favored under either loss measure. Losses can be reduced with minimum biomass surveys and closed areas that directly cushion fishing mortality rates from being more than 50% too low or high.


2001 ◽  
Vol 58 (12) ◽  
pp. 2490-2501 ◽  
Author(s):  
S D Frusher ◽  
J M Hoenig

Fishing and natural mortality rates and tag reporting rate for rock lobsters (Jasus edwardsii) in northwest Tasmania, Australia, were estimated using multiyear tagging models. These estimates are necessary for assessment of the resource. Several models were examined that had either two or three tagging events each year, and either combined sexes or kept sexes separate. The model that best described the dynamics of the fishery utilized three tagging events within a year. The year was divided into discrete periods and, within each year, fishing effort and duration of period were used to apportion fishing and natural mortalities, respectively, to the periods. The separation of fishing mortalities by sex was not found to improve the models. Although high (1.0–1.2·year–1), the instantaneous fishing mortality estimates were comparable to estimates obtained from other methods and the relative standard errors were low. Reporting rate estimates were also precise and indicated a lack of participation by the fishing industry. Estimates of natural mortality were low (0.00–0.02·year–1) but imprecise.


2017 ◽  
Vol 9 (2) ◽  
pp. 85
Author(s):  
Umi Chodrijah ◽  
Ali Suman

Tingkat eksploitasi udang putih (Penaeus merguiensis) sangat intensif. Hal ini terindikasi dengan hasil tangkapan udang di WPP-NRI 716 selama 9 tahun terakhir meningkat. Tujuan penelitian ini untuk mengkaji beberapa parameter populasi dan aspek biologi udang putih di perairan Tarakan. Data panjang karapas dan tingkat kematangan gonad udang putih dikumpulkan dari tempat pendaratan udang di Selumit Pantai, Tarakan, Kalimantan Utara pada Januari sampai dengan November 2016. Pendugaan parameter populasi dengan aplikasi model analisis menggunakan program ELEFAN 1. Hasil penelitian menunjukkan rata-rata ukuran udang putih pertama kali tertangkap (Lc) pada panjang karapas 32,51 mm dan rata-rata ukuran pertama kali matang gonad 33,58 mm. Puncak musim pemijahan terjadi pada Maret dan Agustus. Laju pertumbuhan (K) sebesar 1,33 per tahun (betina) dan 1,55 per tahun (jantan). Laju kematian total (Z) sebesar 7,5 per tahun (betina) dan 8,85 per tahun (jantan), laju kematian alamiah (M) sebesar 1,82 per tahun (betina) dan 2,16 per tahun (jantan) serta laju kematian akibat penangkapan (F) sebesar 5,68 per tahun (betina) dan 6,69 per tahun (jantan). Laju pengusahaan (E) udang putih di perairan Tarakan adalah sebesar 0,76 per tahun. Hal ini menunjukkan tingkat pemanfaatan udang putih telah mengalami lebih tangkap (overfishing). Kondisi ini menggambarkan perlunya dilakukan pengurangan upaya sekitar 52 %.  The banana prawn (Penaeus merguiensis) have been exploited intensively. For instance, within nine years the number of shrimp production in FMA 716 increased dramatically. This research aims to identify the some population parameters of banana prawn in the Tarakan waters. This research was carried out from January to November 2016. Data were analyzed using the analytical model application with ELEFAN I. The result showed that the length at first capture (Lc) of banana prawn was 32,51 mmCL and the length at first maturity (Lm) was 33,58 mm CL. The peak season of spawning period was indicated on March and August. The growth rate (K) was 1,33 /year (female) and 1.55/year (male). Total mortality rate (Z) was 7.5/year (female) and 8,85/year (male), natural mortality rate (M) rate was 1.82/year (female) and 2.16/year (male) and fishing mortality rate ( F) were 5.68/ year (female) and 6.69/year (male). The exploitation rate (E) of banana prawn in the Tarakan waters was 0.76 per year. Therefore, level of existing fishing effort of the banana prawn should reduced about 52 % in the next year.


<em>Abstract.—</em>Stock assessment methodology has increasingly employed statistical procedures as a means to incorporate uncertainty into assessment advice. Deterministic values of fishing mortality rates (<em>F<sub>t </sub></em>) estimated from assessment models have been replaced by empirical distributions that can be compared with an appropriate biological reference point (<em>F</em><sub>BRP</sub>) to generate statements of probability (e.g., Pr[<em>F<sub>t </sub></em>≥ <em>F</em><sub>BRP</sub>]) regarding the status of the resource. It must be recognized, however, that terminal year fishing mortality rates and the biological reference points to which they are compared are both estimated with error, which will impact the quality of decisions regarding the status of the stock. We propose a two-tier stochastic decision-based framework for a recently conducted stock assessment of the Delaware Bay blue crab stock that specifies not only the probability for the condition Pr(<em>F<sub>t </sub></em>≥ <em>F</em><sub>BRP</sub>), but also the statistical level of confidence (i.e., 90%) in that decision. The approach uses a mixed Monte Carlobootstrap procedure to estimate probability distributions for both the terminal year fishing mortality rate (<em>F<sub>t </sub></em>) and the replacement fishing mortality rate, approximated by <em>F</em><sub>MED</sub> as an overfishing definition. Probability density functions (PDFs) for <em>F<sub>t </sub></em>and <em>F</em><sub>MED</sub>, generated using the mixed Monte Carlo-bootstrap procedure, show that recent fishing mortality rates (80% CI from 0.6 to 1.2) are generally below the <em>F</em><sub>MED</sub> overfishing definition (80% CI from 0.9 to 1.6), with significant overlap in the PDFs. Using the PDFs, the stochastic decision-based approach then generates a probability profile by integrating the area under the <em>F<sub>t </sub></em>PDF for different decision confidence levels (e.g. 90%, 80%, 70%, etc.), which can be thought of as one-tailed <em>α</em>-probability from standard statistical hypothesis testing. For example, at the 80% decision confidence level (value of <em>F </em>corresponding to the upper 20% of the <em>F</em><sub>MED</sub> PDF), Pr(<em>F<sub>t </sub>> F</em>MED) is about 0.03. Thus, with high confidence (80%), we can state that the blue crab stock is not currently being overfished. This approach can be extended to decisions regarding control laws that specify both maximum fishing rate and minimum biomass thresholds.


Sign in / Sign up

Export Citation Format

Share Document