scholarly journals Knockdown of TOR signaling pathway regulator suppresses cell migration and invasion in non‑small cell lung cancer via the regulation of epithelial‑to‑mesenchymal transition

Author(s):  
Xiang Xu ◽  
Huangkai Zhu ◽  
Minglei Yang ◽  
Enkuo Zheng ◽  
Yinjie Zhou ◽  
...  
2019 ◽  
Vol 22 (4) ◽  
pp. 238-244 ◽  
Author(s):  
Gang Chen ◽  
Bo Ye

Purpose: Epithelial-to-Mesenchymal Transition (EMT) was reported to play a key role in the development of Non-Small Cell Lung Cancer (NSCLC). The process of EMT is regulated by the changes of miRNAs expression. However, it is still unknown which miRNA changed the most in the process of canceration and whether these changes played a role in tumor development. Methods: A total of 36 SCLC patients treated in our hospital between 11th, 2015 and 10th, 2017 were enrolled. The samples of cancer tissues and paracancer tissues of patients were collected and analyzed. Then, the miRNAs in normal lung cells and NSCLC cells were also analyzed. In the presence of TGF-β, we transfected the miRNA mimics or inhibitor into NSCLC cells to investigate the role of the significantly altered miRNAs in cell migration and invasion and in the process of EMT. Results: MiR-330-3p was significantly up-regulated in NSCLC cell lines and tissues and miRNA- 205 was significantly down-regulated in NSCLC cell lines and NSCLC tissues. Transfected miRNA-205 mimics or miRMA-330-3p inhibitor inhibited the migration and invasion of NCIH1975 cell and restrained TGF-β-induced EMT in NSCLC cells. Conclusion: miRNA-330-3p and miRNA-205 changed the most in the process of canceration in NSCLC. Furthermore, miR-330-3p promoted cell invasion and metastasis in NSCLC probably by promoting EMT and miR-205 could restrain NSCLC likely by suppressing EMT.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sutthaorn Pothongsrisit ◽  
Kuntarat Arunrungvichian ◽  
Yoshihiro Hayakawa ◽  
Boonchoo Sritularak ◽  
Supachoke Mangmool ◽  
...  

AbstractCancer metastasis is a major cause of the high mortality rate in lung cancer patients. The cytoskeletal rearrangement and degradation of extracellular matrix are required to facilitate cell migration and invasion and the suppression of these behaviors is an intriguing approach to minimize cancer metastasis. Even though Erianthridin (ETD), a phenolic compound isolated from the Thai orchid Dendrobium formosum exhibits various biological activities, the molecular mechanism of ETD for anti-cancer activity is unclear. In this study, we found that noncytotoxic concentrations of ETD (≤ 50 μM) were able to significantly inhibit cell migration and invasion via disruption of actin stress fibers and lamellipodia formation. The expression of matrix metalloproteinase-2 (MMP-2) and MMP-9 was markedly downregulated in a dose-dependent manner after ETD treatment. Mechanistic studies revealed that protein kinase B (Akt) and its downstream effectors mammalian target of rapamycin (mTOR) and p70 S6 kinase (p70S6K) were strongly attenuated. An in silico study further demonstrated that ETD binds to the protein kinase domain of Akt with both hydrogen bonding and van der Waals interactions. In addition, an in vivo tail vein injection metastasis study demonstrated a significant effect of ETD on the suppression of lung cancer cell metastasis. This study provides preclinical information regarding ETD, which exhibits promising antimetastatic activity against non-small-cell lung cancer through Akt/mTOR/p70S6K-induced actin reorganization and MMPs expression.


Sign in / Sign up

Export Citation Format

Share Document