scholarly journals Interleukin-1β induces intercellular adhesion molecule-1 expression, thus enhancing the adhesion between mesenchymal stem cells and endothelial progenitor cells via the p38 MAPK signaling pathway

Author(s):  
Jun Guo ◽  
Hongwei Zhang ◽  
Jie Xia ◽  
Jixue Hou ◽  
Yixiao Wang ◽  
...  
2020 ◽  
Author(s):  
chu xu ◽  
haijie liu ◽  
yuanjia he ◽  
yuanqing li ◽  
xiaoning he

Abstract Background: The role of bone tissue engineering is to regenerate tissue using biomaterials and stem cell based approaches. Combination of two or more cell types is one of the strategies to promote bone formation. Endothelial progenitor cells (EPCs) may enhance the osteogenic properties of mesenchymal stem cells (MSCs) and promote bone healing, this study aimed to investigate the possible mechanisms of EPCs on promoting osteogenic differentiation of MSCs.Methods: MSCs and EPCs were isolated and co-cultured in Transwell chambers, the effects of EPCs on the regulation of MSC biological properties was investigated. Real-time PCR array, qRT-PCR and western blotting were performed to explore possible signaling pathways involved in osteogenesis. The expression of osteogenesis markers and calcium nodule formation was quantified by qRT-PCR, western blotting and Alizarin Red staining. Results: Results showed that when co-cultured with EPCs, MSCs exhibited greater alkaline phosphatase (ALP) activity and increased calcium mineral deposition significantly. The mitogen-activated protein kinase (MAPK) signaling pathway was involved in this process. p38 gene expression and p38 protein phosphorylation levels showed significant up-regulation in co-cultured MSCs. Silence expression of p38 in co-cultured MSCs reduced osteogenic gene expression, protein synthesis, ALP activity and calcium nodule formation.Conclusions: These data suggest paracrine signaling from EPCs influence the biological function and promote MSCs osteogenic differentiation. Activation of the p38MAPK pathway may be the key to enhancing MSCs osteogenic differentiation via indirect interactions with EPCs.


2020 ◽  
Vol 48 (9) ◽  
pp. 030006052094513
Author(s):  
Yefei Zhang ◽  
Huahua Liu ◽  
Weiliang Tang ◽  
Qiongya Qiu ◽  
Jiahao Peng

Objective To assess the effects of resveratrol (RSV) on expression of adhesion molecules in endothelial progenitor cells (EPCs) following tumor necrosis factor-α (TNF-α) stimulation. Methods EPCs were treated with RSV and stimulated with TNF-α. A mononuclear cell (MNC) adhesion assay was used to assess the effects of RSV on TNF-α-induced MNC adhesion. Vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin expression levels and nuclear factor κB (NF-κB) activation were assessed by immunoblotting. Results MNC adhesion to TNF-α-treated EPCs and VCAM-1/ICAM-1/E-selectin levels in EPCs were increased following TNF-α stimulation and decreased following RSV treatment. TNF-α enhanced NF-κB inhibitor α (IκB-α) phosphorylation in the cytosol as well as nuclear NF-κB p65 levels, both of which were decreased by RSV. Conclusions These findings provide new insights into RSV’s anti-inflammatory and anti-atherosclerotic effects. RSV’s mechanism of action might involve downregulation of VCAM-1, ICAM-1 and E-selectin by partial blockade of TNF-α-induced NF-κB activation and IκB-α phosphorylation in EPCs.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 987 ◽  
Author(s):  
Xiaoxia Jin ◽  
Tong Wang ◽  
Yingjun Liao ◽  
Jingjing Guo ◽  
Gaoyang Wang ◽  
...  

We previously reported that expression of matrix metalloproteinase-9 (MMP-9) mRNA and protein was upregulated during 1,2-dichloroethane (1,2-DCE) induced brain edema in mice. We also found that the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway resulted in MMP-9 overexpression and nuclear factor-κB (NF-κB) activation in mice treated with 1,2-DCE. In this study, we further hypothesized that inflammatory reactions mediated by the p38 MAPK/ NF-κB signaling pathway might be involved in MMP-9 overexpression, blood–brain barrier (BBB) disruption and edema formation in the brain of 1,2-DCE-intoxicated mice. Our results revealed that subacute poisoning by 1,2-DCE upregulates protein levels of glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba-1), interleukin-1β (IL-1β), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), inducible nitric oxide synthase (iNOS) and p-p65 in mouse brains. Pretreatment with an inhibitor against p38 MAPK attenuates these changes. Moreover, pretreatment with an inhibitor against NF-κB attenuates alterations in brain water content, pathological indications notable in brain edema, as well as mRNA and protein expression on levels of MMP-9, VCAM-1, ICAM-1, iNOS, and IL-1β, tight junction proteins (TJs), GFAP and Iba-1 in the brain of 1,2-DCE-intoxicated mice. Furthermore, pretreatment with an inhibitor against MMP-9 obstructs the decrease of TJs in the brain of 1,2-DCE-intoxicated mice. Lastly, pretreatment with an antagonist against the IL-1β receptor also attenuates changes in protein levels of p-p38 MAPK, p-p65, p-IκB, VCAM -1, ICAM-1, IL-1β, and Iba-1 in the brain of 1,2-DCE-intoxicated-mice. Taken together, findings from the current study indicate that the p38 MAPK/ NF-κB signaling pathway might be involved in the activation of glial cells, and the overproduction of proinflammatory factors, which might induce inflammatory reactions in the brain of 1,2-DCE-intoxicated mice that leads to brain edema.


Sign in / Sign up

Export Citation Format

Share Document