scholarly journals Tanshinone‑IIA inhibits myocardial infarct via decreasing of the mitochondrial apoptotic signaling pathway in myocardiocytes

2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Yeqing Fang ◽  
Chengcheng Duan ◽  
Shaoyuan Chen ◽  
Zhenguo Liu ◽  
Bimei Jiang ◽  
...  
2020 ◽  
Vol 130 ◽  
pp. 110547 ◽  
Author(s):  
Xiqian Zhang ◽  
Ting Wang ◽  
Yujie Yang ◽  
Ruina Li ◽  
Ya Chen ◽  
...  

2012 ◽  
Vol 39 (6) ◽  
pp. 6495-6503 ◽  
Author(s):  
Huimin Dong ◽  
Shanpin Mao ◽  
Jiajun Wei ◽  
Baohui Liu ◽  
Zhaohui Zhang ◽  
...  

2013 ◽  
Vol 8 (4) ◽  
pp. 1163-1168 ◽  
Author(s):  
SHIPING CAO ◽  
ZHI ZENG ◽  
XIANBAO WANG ◽  
JIANPING BIN ◽  
DINGLI XU ◽  
...  

2020 ◽  
Author(s):  
Qing Song ◽  
Liu Yang ◽  
Zhifen Han ◽  
Xinnan Wu ◽  
Ruixiao Li ◽  
...  

Abstract Background: Tanshinone IIA (Tan IIA) is a major active ingredient extracted from Salvia miltiorrhiza, which has been proved to inhibit metastasis of various cancers including colorectal cancer (CRC). However, the detailed mechanisms of Tan IIA against CRC metastasis are not well explored. Epithelial-to-mesenchymal transition (EMT) exerts an important regulatory role in CRC metastasis, and our previous mechanism studies demonstrated that β-arrestin1 could regulate CRC EMT partly through β-catenin signaling pathway. Therefore, in this work we investigated whether Tan IIA could regulate CRC EMT through β-arrestin1-mediated β-catenin signaling pathway in vivo and in vitro.Methods: The nude mice tail vein metastasis model was established to observe the effect of Tan IIA on CRC lung metastasis in vivo. The lung metastasis was evaluated by living animal imaging and hemaoxylin-eosin staining. The migratory ability of CRC cells in vitro were measured by transwell and wound healing assays. The protein expression and cellular localization of β-arrestin1 and β-catenin were characterized by immunofluorescence staining and western blot. The β-catenin signaling pathway related proteins and EMT associated proteins in CRC cells were detected by western blot and immunohistochemistry. Results: Our results showed that Tan IIA inhibited the lung metastases of CRC cells in vivo and extended the survival time of nude mice. In vitro, Tan IIA increased the expression of E-cadherin, decreased the secretion of Snail, N-cadherin and Vimentin, thus suppressed EMT and the migratory ability of CRC cells. Further study found the mechanism involving in Tan IIA regulating EMT and metastasis, referring to the suppression of β-arrestin1 expression, reduction of β-catenin nuclear localization, thereby the decreased activity of β-catenin signaling. Conclusion: Our data revealed a new mechanism of Tan IIA on the suppression of EMT and metastasis in CRC via β-arrestin1-mediated β-catenin signaling pathway, and provided support for Tan IIA as anti-metastatic agents in CRC.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Changsheng Nai ◽  
Haochen Xuan ◽  
Yingying Zhang ◽  
Mengxiao Shen ◽  
Tongda Xu ◽  
...  

The flavonoid luteolin exists in many types of fruits, vegetables, and medicinal herbs. Our previous studies have demonstrated that luteolin reduced ischemia/reperfusion (I/R) injury in vitro, which was related with sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) activity. However, the effects of luteolin on SERCA2a activity during I/R in vivo remain unclear. To investigate whether luteolin exerts cardioprotective effects and to monitor changes in SERCA2a expression and activity levels in vivo during I/R, we created a myocardial I/R rat model by ligating the coronary artery. We demonstrated that luteolin could reduce the myocardial infarct size, lactate dehydrogenase release, and apoptosis during I/R injury in vivo. Furthermore, we found that luteolin inhibited the I/R-induced decrease in SERCA2a activity in vivo. However, neither I/R nor luteolin altered SERCA2a expression levels in myocardiocytes. Moreover, the PI3K/Akt signaling pathway played a vital role in this mechanism. In conclusion, the present study has confirmed for the first time that luteolin yields cardioprotective effects against I/R injury by inhibiting the I/R-induced decrease in SERCA2a activity partially via the PI3K/Akt signaling pathway in vivo, independent of SERCA2a protein level regulation. SERCA2a activity presents a novel biomarker to assess the progress of I/R injury in experimental research and clinical applications.


Sign in / Sign up

Export Citation Format

Share Document