Polysaccharide sulphated derivative from Aconitum�coreanum induces cell apoptosis in the human brain glioblastoma U87MG cell line via the NF-κB/Bcl-2 cell apoptotic signaling pathway

2017 ◽  
Author(s):  
Libo Sun ◽  
Zhijun Wang ◽  
Hailiang Wang ◽  
Jincheng Li ◽  
Huaxin Liang
2004 ◽  
Vol 78 ◽  
pp. 474
Author(s):  
K W. Seo ◽  
I H. Yang ◽  
H S. Yoo ◽  
A K. Lee ◽  
J N. Kwon ◽  
...  

2005 ◽  
Vol 37 (1) ◽  
pp. 155-158 ◽  
Author(s):  
K.W. Seo ◽  
H.K. Lee ◽  
S.J.N. Choi ◽  
B.J. So ◽  
S.K. Kim ◽  
...  

2019 ◽  
Vol 20 (23) ◽  
pp. 5846 ◽  
Author(s):  
Fenglei Chen ◽  
Jiaqi Jin ◽  
Jiahui Hu ◽  
Yujing Wang ◽  
Zhiyu Ma ◽  
...  

While silica nanoparticles (SiNPs) have wide applications, they inevitably increase atmospheric particulate matter and human exposure to this nanomaterial. Numerous studies have focused on how to disclose SiNP toxicity and on understanding its toxic mechanisms. However, there are few studies in the literature reporting the interaction between endoplasmic reticulum (ER) stress and SiNP exposure, and the corresponding detailed mechanisms have not been clearly determined. In this study, CCK-8 and flow cytometry assays demonstrated that SiNPs gradually decreased cell viability and increased cell apoptosis in RAW 264.7 macrophage cells in dose- and time-dependent manners. Western blot analysis showed that SiNPs significantly activated ER stress by upregulating GRP78, CHOP, and ERO1α expression. Meanwhile, western blot analysis also showed that SiNPs activated the mitochondrial-mediated apoptotic signaling pathway by upregulating BAD and Caspase-3, and downregulating the BCL-2/BAX ratio. Moreover, 4-phenylbutyrate (4-PBA), an ER stress inhibitor, significantly decreased GRP78, CHOP, and ERO1α expression, and inhibited cell apoptosis in RAW 264.7 macrophage cells. Furthermore, overexpression of CHOP significantly enhanced cell apoptosis, while knockdown of CHOP significantly protected RAW 264.7 macrophage cells from apoptosis induced by SiNPs. We found that the CHOP-ERO1α-caspase-dependent apoptotic signaling pathway was activated by upregulating the downstream target protein ERO1α and caspase-dependent mitochondrial-mediated apoptotic signaling pathway by upregulating Caspase-3 and downregulating the ratio of BCL-2/BAX. In summary, ER stress participated in cell apoptosis induced by SiNPs and CHOP regulated SiNP-induced cell apoptosis, at least partly, via activation of the CHOP-ERO1α-caspase apoptotic signaling pathway in RAW 264.7 macrophage cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Xiyan Chen ◽  
Qi Wang ◽  
Ke Gu ◽  
Aonan Li ◽  
Xucheng Fu ◽  
...  

Objective. To establish an immortalized human periodontal ligament stem cell line (hPDLSC) and investigate whether and how YAP mediates the establishment of the stem cell line. Methods. Primary hPDLSCs were cultured and transfected with lentivirus containing the telomerase reverse transcriptase (TERT) gene. The expression of TERT was detected via the polymerase chain reaction (PCR) and real-time quantitative PCR (RT-PCR). Flow cytometry was employed to detect surface markers of hPDLSCs and TERT-hPDLSCs. The cell counting kit-8 (CCK-8) and 5-ethynyl-2’-deoxyuridine (EdU) methods were used to examine the proliferation ability of the cells. Flow cytometry and TUNEL staining were employed to examine the cell apoptosis rate. The β-galactosidase staining assay was used to assess the rate of cell senescence. The osteogenic differentiation ability of the cells was detected via alkaline phosphatase (ALP) staining and Alizarin red staining assays. BALB/c mice were employed to determine the tumorigenicity of TERT-hPDLSCs. The expression levels of YAP and other proteins in the Hippo signaling pathway were detected by Western blotting. Verteporfin was used to inhibit the binding of YAP to the downstream target gene TEAD. Results. TERT-hPDLSCs showed stable high expression of TERT, even at the thirtieth passage after transfection with lentivirus containing the TERT gene. Compared with primary hPDLSCs, TERT-hPDLSCs exhibited a stronger proliferation ability and lower cell apoptosis and senescence rates while maintaining the same osteogenetic differentiation ability as primary hPDLSCs. The transfection of hPDLSCs with lentivirus containing the TERT gene did not lead to tumorigenesis in nude mice. The Hippo signaling pathway was inactivated in TERT-hPDLSCs compared to hPDLSCs. When treated with verteporfin, the proliferation of TERT-hPDLSCs decreased, while the apoptosis and senescence rates of these cells increased. However, TERT-hPDLSCs still showed a stronger proliferation ability and lower cell apoptosis and senescence rates than hPDLSCs treated with verteporfin at the same concentration. Conclusions. Overexpression of TERT in hPDLSCs resulted in the successful establishment of an immortalized periodontal ligament stem cell line. TERT may regulate the biological characteristics of hPDLSCs through the Hippo/YAP signaling pathway. hPDLSCs could be a feasible resource for stem cell research and a promising resource for stem cell therapy.


2020 ◽  
Vol 16 ◽  
Author(s):  
Jamshed Iqbal ◽  
Ayesha Basharat ◽  
Sehrish Bano ◽  
Syed Mobasher Ali Abid ◽  
Julie Pelletier ◽  
...  

Aims: The present study was conducted to examine the inhibitory effects of synthesized sulfonylhydrazones on the expression of CD73 (ecto-5′-NT). Background: CD73 (ecto-5′-NT) represents the most significant class of ecto-nucleotidases which are mainly responsible for dephosphorylation of adenosine monophosphate to adenosine. Inhibition of CD73 played an important role in the treatment of cancer, autoimmune disorders, precancerous syndromes, and some other diseases associated with CD73 activity. Objective: Keeping in view the significance of CD73 inhibitor in the treatment of cervical cancer, a series of sulfonylhydrazones (3a-3i) derivatives synthesized from 3-formylchromones were evaluated. Methods: All sulfonylhydrazones (3a-3i) were evaluated for their inhibitory activity towards CD73 (ecto-5′-NT) by the malachite green assay and their cytotoxic effect was investigated on HeLa cell line using MTT assay. Secondly, most potent compound was selected for cell apoptosis, immunofluorescence staining and cell cycle analysis. After that, CD73 mRNA and protein expression were analyzed by real-time PCR and Western blot. Results: Among all compounds, 3h, 3e, 3b, and 3c were found the most active against rat-ecto-5′-NT (CD73) enzyme with IC50 (µM) values of 0.70 ± 0.06 µM, 0.87 ± 0.05 µM, 0.39 ± 0.02 µM and 0.33 ± 0.03 µM, respectively. These derivatives were further evaluated for their cytotoxic potential against cancer cell line (HeLa). Compound 3h and 3c showed the cytotoxicity at IC50 value of 30.20 ± 3.11 µM and 86.02 ± 7.11 µM, respectively. Furthermore, compound 3h was selected for cell apoptosis, immunofluorescence staining and cell cycle analysis which showed promising apoptotic effect in HeLa cells. Additionally, compound 3h was further investigated for its effect on expression of CD73 using qRT-PCR and western blot. Conclusion: Among all synthesized compounds (3a-3i), Compound 3h (E)-N'-((6-ethyl-4-oxo-4H-chromen-3-yl) methylene)-4-methylbenzenesulfonohydrazide was identified as most potent compound. Additional expression studies conducted on HeLa cell line proved that this compound successfully decreased the expression level of CD73 and thus inhibiting the growth and proliferation of cancer cells.


2020 ◽  
Vol 105 (3) ◽  
Author(s):  
Ying Xiao ◽  
Lei‐lei Li ◽  
Asma Bibi ◽  
Ning Zhang ◽  
Ting Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document