scholarly journals Decreased expression of thioredoxin interacting protein mRNA in inflamed colonic mucosa in patients with ulcerative colitis

Author(s):  
Yasuo Takahashi ◽  
Hideki Masuda ◽  
Yukimoto Ishii ◽  
Yayoi Nishida ◽  
Megumi Kobayashi ◽  
...  
2021 ◽  
pp. 1-12
Author(s):  
Pengli Wang ◽  
Dan Zheng ◽  
Hongyang Qi ◽  
Qi Gao

BACKGROUND: MicroRNAs (miRNAs) play potential role in the development of various types of cancer conditions including pancreatic cancer (PC) targeting several cellular processes. Present study was aimed to evaluate function of miR-125b and the mechanism involved in PC. METHODS: Cell migration, MTT and BrdU study was done to establish the migration capability, cell viability and cell proliferation respectively. Binding sites for miR-125b were recognized by luciferase assay, expression of protein by western blot and immunofluorescence assay. In vivo study was done by BALB/c nude xenograft mice for evaluating the function of miR-125b. RESULTS: The study showed that expression of miR-125b was elevated in PC cells and tissues, and was correlated to proliferation and migration of cells. Also, over-expression of miR-125b encouraged migration, metastasis and proliferation of BxPC-3 cells, the suppression reversed it. We also noticed that thioredoxin-interacting protein (TXNIP) was the potential target of miR-125b. The outcomes also suggested that miR-125b governed the expression of TXNIP inversely via directly attaching to the 3′-UTR activating hypoxia-inducible factor 1α (HIF1α). Looking into the relation between HIF1α and TXNIP, we discovered that TXNIP caused the degradation and export of HIF1α by making a complex with it. CONCLUSION: The miR-125b-TXNIP-HIF1α pathway may serve useful strategy for diagnosing and treating PC.


2021 ◽  
Vol 224 (2) ◽  
pp. S243-S244
Author(s):  
Sivan Farladansky-Gershnabel ◽  
Ishai Heusler ◽  
Tal Biron-Shental ◽  
Keren Cohen-Hagai ◽  
Sydney Benchetrit ◽  
...  

2021 ◽  
pp. 105399
Author(s):  
Saifudeen Ismael ◽  
Sanaz Nasoohi ◽  
Lexiao Li ◽  
Khurram Aslam ◽  
Mohammad Moshahid Khan ◽  
...  

2021 ◽  
Vol 22 (5) ◽  
pp. 2754
Author(s):  
Naila Qayyum ◽  
Muhammad Haseeb ◽  
Moon Suk Kim ◽  
Sangdun Choi

Thioredoxin-interacting protein (TXNIP), widely known as thioredoxin-binding protein 2 (TBP2), is a major binding mediator in the thioredoxin (TXN) antioxidant system, which involves a reduction-oxidation (redox) signaling complex and is pivotal for the pathophysiology of some diseases. TXNIP increases reactive oxygen species production and oxidative stress and thereby contributes to apoptosis. Recent studies indicate an evolving role of TXNIP in the pathogenesis of complex diseases such as metabolic disorders, neurological disorders, and inflammatory illnesses. In addition, TXNIP has gained significant attention due to its wide range of functions in energy metabolism, insulin sensitivity, improved insulin secretion, and also in the regulation of glucose and tumor suppressor activities in various cancers. This review aims to highlight the roles of TXNIP in the field of diabetology, neurodegenerative diseases, and inflammation. TXNIP is found to be a promising novel therapeutic target in the current review, not only in the aforementioned diseases but also in prolonged microvascular and macrovascular diseases. Therefore, TXNIP inhibitors hold promise for preventing the growing incidence of complications in relevant diseases.


Author(s):  
Yanbing Li ◽  
Yu Geng ◽  
Boda Zhou ◽  
Xuejiao Wu ◽  
Ou Zhang ◽  
...  

AbstractIt is formerly conducted that long non-coding RNA growth arrest-specific 5 (GAS5) is involved in the process of coronary atherosclerosis (AS). The regulatory effects of GAS5 on the microRNA (miR)-194-3p/thioredoxin-interacting protein (TXNIP) axis in AS have been insufficiently explored yet. Thereafter, this work is started from GAS5/miR-194-3p/TXNIP axis in AS. AS rats were modeled to obtain their coronary vascular tissues and endothelial cells (ECs), in which GAS5, miR-194-3p, and TXNIP expression were tested. ECs were identified by immunohistochemistry. The mechanism among GAS5, miR-194-3p, and TXNIP was determined. ECs were transfected with inhibited GAS5 or overexpressed miR-194-3p to decipher their functions in proliferation and apoptosis of ECs in AS. Raised GAS5 and TXNIP and degraded miR-194-3p expression levels exhibited in AS. GAS5 bound to miR-194-3p while miR-194-3p targeted TXNIP. Depleting GAS5 or restoring miR-194-3p enhanced proliferation and depressed apoptosis of ECs in AS. This work clearly manifests that inhibited GAS5 facilitates the growth of ECs through miR-194-3p-targeted TXNIP in AS, consolidating the basal reference to the curing for AS.


2012 ◽  
Vol 302 (10) ◽  
pp. G1163-G1170 ◽  
Author(s):  
Kazuhiko Uchiyama ◽  
Yuji Naito ◽  
Tomohisa Takagi ◽  
Katsura Mizushima ◽  
Yasuko Hirai ◽  
...  

Serpin B1 is a monocyte neutrophil elastase (NE) inhibitor and is one of the most efficient inhibitors of NE. In the present study, we investigated the role of serpin B1 in the pathogenesis of ulcerative colitis by using clinical samples and an experimental model. The colonic expression of serpin B1 was determined by real-time polymerase chain reaction (PCR), Western blot analysis, and immunohistological studies in both normal and inflamed mucosa from patients with ulcerative colitis. Serpin B1 mRNA expression was determined by real-time PCR in the mouse dextran sodium sulfate (DSS)-induced colitis model. Young adult mouse colonic epithelial (YAMC) cells were used to determine the role of serpin B1. Serpin B1 gene transfected YAMC cells were treated with H2O2 to measure cell viability. The expression of NE was determined in YAMC cells treated with H2O2. NE-silenced YAMC cells were also treated with H2O2 and then measured for viability. Upregulated expression of serpin B1 in colonic mucosa was confirmed from patients with active ulcerative colitis. Immunohistochemical studies showed that serpin B1 expression was localized not only in inflammatory infiltration cells but also in epithelial cells. Serpin B1 mRNA expression was also increased in colonic mucosa of mouse DSS-induced colitis. Serpin B1-transfected YAMC cells were resistant against the treatment of H2O2. H2O2 treatment significantly induced NE in YAMC cells, and NE-silenced YAMC cells were also resistant against the treatment of H2O2. These results suggest that serpin B1 may be a novel marker of active ulcerative colitis and may play an important role in the pathogenesis of inflammatory bowel disease.


Sign in / Sign up

Export Citation Format

Share Document