scholarly journals Forced expression of Nanog with mRNA synthesized in vitro to evaluate the malignancy of HeLa cells through acquiring cancer stem cell phenotypes

2016 ◽  
Vol 35 (5) ◽  
pp. 2643-2650 ◽  
Author(s):  
YAN DING ◽  
AI QING YU ◽  
XIAO LI WANG ◽  
XING RONG GUO ◽  
YA HONG YUAN ◽  
...  
2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e23512-e23512
Author(s):  
Susan Tsang ◽  
Nino Carlo Rainusso ◽  
Jason Todd Yustein

e23512 Background: Osteosarcoma is the most common pediatric bone cancer and a key genetic characteristic of this particular malignancy is its complex karyotype. Specifically it has been reported that 40% of osteosarcoma patients’ present with 8q24 amplification. The presence of this specific amplification has been previously associated with a high rate of relapse and poor prognosis for osteosarcoma patients. Within this amplicon resides, a long non-coding RNA gene, PVT-1. Prior studies indicates that PVT-1 has pro-oncogenic properties however the function of PVT-1 in osteosarcoma is not well characterized. Methods: To understand PVT-1 copy number, Fluorescent In Situ Hybridization was performed on both osteosarcoma cell lines and osteosarcoma patient-derived xenografts. In addition the PVT-1 RNA level is elevated in a majority of osteosarcoma samples compared to normal bone. To test PVT-1 pro-oncogenic role in osteosarcoma, several functional assays were performed. Results: Our studies demonstrated that overexpression of PVT-1 in osteosarcoma cell lines promotes multiple tumorigenic behaviors including enhanced proliferation, migration, invasion and chemotherapeutic resistance to cisplatin. PVT-1’s ability to mediate metastasis and contribute to chemotherapeutic sensitivity is a shared phenotype of cancer stem cells. Based on this observation, we hypothesize targeting PVT-1 will reduce cancer stem-cell properties. Osteosarcoma lines with increased levels of PVT-1 exhibited higher expression of cancer stem cell genes: Nanog, SOX2, c-Myc, and Oct4 at both the transcriptomic and proteomic level. In Vitro and In Vivo self-renewal capacity studies showed enhanced osteosarcoma cell self-renewal in the PVT-1 overexpression cohort. Additional molecular studies were performed in order to gain additional insights into potential mechanism of action for PVT-1 including Reverse Phase Protein Array. Initial analysis suggest a role for PVT-1 in regulating the PI3K-AKT-TSC2 pathway. Conclusions: This suggests a potential oncogenic pathway in which PVT-1 enhances cancer stem cell phenotypes. On-going investigations are addressing potential PI3K/TSC2 pathway inhibitors, BEZ-2335 and LY3023414, which could be utilized to regulate PVT-1 mediated tumorigenic roles and cancer stem-like properties.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1303
Author(s):  
Rizwan Ali ◽  
Hajar Al Zahrani ◽  
Tlili Barhoumi ◽  
Alshaimaa Alhallaj ◽  
Abdullah Mashhour ◽  
...  

In vitro studies of a disease are key to any in vivo investigation in understanding the disease and developing new therapy regimens. Immortalized cancer cell lines are the best and easiest model for studying cancer in vitro. Here, we report the establishment of a naturally immortalized highly tumorigenic and triple-negative breast cancer cell line, KAIMRC2. This cell line is derived from a Saudi Arabian female breast cancer patient with invasive ductal carcinoma. Immunocytochemistry showed a significant ratio of the KAIMRC2 cells’ expressing key breast epithelial and cancer stem cells (CSCs) markers, including CD47, CD133, CD49f, CD44, and ALDH-1A1. Gene and protein expression analysis showed overexpression of ABC transporter and AKT-PI3Kinase as well as JAK/STAT signaling pathways. In contrast, the absence of the tumor suppressor genes p53 and p73 may explain their high proliferative index. The mice model also confirmed the tumorigenic potential of the KAIMRC2 cell line, and drug tolerance studies revealed few very potent candidates. Our results confirmed an aggressive phenotype with metastatic potential and cancer stem cell-like characteristics of the KAIMR2 cell line. Furthermore, we have also presented potent small molecule inhibitors, especially Ryuvidine, that can be further developed, alone or in synergy with other potent inhibitors, to target multiple cancer-related pathways.


2008 ◽  
Vol 134 (4) ◽  
pp. A-96
Author(s):  
Sung Pil Hong ◽  
Jeong Youp Park ◽  
Jing Wen ◽  
Jin Wook Yoon ◽  
Kyung Hwa Park ◽  
...  

2018 ◽  
Vol 16 (4) ◽  
pp. 707-719 ◽  
Author(s):  
Thu H. Truong ◽  
Hsiangyu Hu ◽  
Nuri A. Temiz ◽  
Kyla M. Hagen ◽  
Brian J. Girard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document