scholarly journals Extra-virgin olive oil phenols block cell cycle progression and modulate chemotherapeutic toxicity in bladder cancer cells

2016 ◽  
Vol 36 (6) ◽  
pp. 3095-3104 ◽  
Author(s):  
Andrea Coccia ◽  
Luciana Mosca ◽  
Rosa Puca ◽  
Giorgio Mangino ◽  
Alessandro Rossi ◽  
...  
2014 ◽  
Vol 65 ◽  
pp. 242-251 ◽  
Author(s):  
Xuan Yuan ◽  
Tao Li ◽  
Erlong Xiao ◽  
Hong Zhao ◽  
Yongqian Li ◽  
...  

2019 ◽  
Vol 19 (6) ◽  
pp. 826-837 ◽  
Author(s):  
Pratibha Pandey ◽  
Preeti Bajpai ◽  
Mohammad H. Siddiqui ◽  
Uzma Sayyed ◽  
Rohit Tiwari ◽  
...  

Background:Plant sterols have proven a potent anti-proliferative and apoptosis inducing agent against several carcinomas including breast and prostate cancers. Jab1 has been reported to be involved in the progression of numerous carcinomas. However, antiproliferative effects of sterols against Jab1 in gall bladder cancer have not been explored yet.Objective:In the current study, we elucidated the mechanism of action of stigmasterol regarding apoptosis induction mediated via downregulation of Jab1 protein in human gall bladder cancer cells.Methods:In our study, we performed MTT and Trypan blue assay to assess the effect of stigmasterol on cell proliferation. In addition, RT-PCR and western blotting were performed to identify the effect of stigmasterol on Jab1 and p27 expression in human gall bladder cancer cells. We further performed cell cycle, Caspase-3, Hoechst and FITC-Annexin V analysis, to confirm the apoptosis induction in stigmasterol treated human gall bladder cancer cells.Results:Our results clearly indicated that stigmasterol has up-regulated the p27 expression and down-regulated Jab1 gene. These modulations of genes might occur via mitochondrial apoptosis signaling pathway. Caspase-3 gets activated with the apoptotic induction. Increase in apoptotic cells and DNA were confirmed through annexin V staining, Hoechst staining, and cell cycle analysis.Conclusion:Thus, these results strongly suggest that stigmasterol has the potential to be considered as an anticancerous therapeutic agent against Jab1 in gall bladder cancer.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinhong Qi ◽  
Li Zhou ◽  
Dongqing Li ◽  
Jingyuan Yang ◽  
He Wang ◽  
...  

Abstract Background Cell division cycle 25A (CDC25A) is a well-recognized regulator of cell cycle progression and is involved in cancer development. This work focused on the function of CDC25A in cervical cancer cell growth and the molecules involved. Methods A GEO dataset GSE63514 comprising data of cervical squamous cell carcinoma (CSCC) tissues was used to screen the aberrantly expressed genes in cervical cancer. The CDC25A expression in cancer and normal tissues was predicted in the GEPIA database and that in CSCC and normal cells was determined by RT-qPCR and western blot assays. Downregulation of CDC25A was introduced in CSCC cells to explore its function in cell growth and the cell cycle progression. The potential regulators of CDC25A activity and the possible involved signaling were explored. Results CDC25A was predicted to be overexpressed in CSCC, and high expression of CDC25A was observed in CSCC cells. Downregulation of CDC25A in ME180 and C33A cells reduced cell proliferation and blocked cell cycle progression, and it increased cell apoptosis. ALX3 was a positive regulator of CDC25A through transcription promotion. It recruited a histone demethylase, lysine demethylase 2B (KDM2B), to the CDC25A promoter, which enhanced CDC25A expression through demethylation of H3k4me3. Overexpression of ALX3 in cells blocked the inhibitory effects of CDC25A silencing. CDC25A was found as a positive regulator of the PI3K/Akt signaling pathway. Conclusion This study suggested that the ALX3 increased CDC25A expression through KDM2B-mediated demethylation of H3K4me3, which induced proliferation and cell cycle progression of cervical cancer cells.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Du ◽  
Weiwei Chen ◽  
Lijuan Yang ◽  
Juanjuan Dai ◽  
Jiwei Guo ◽  
...  

Abstract Deregulated Sonic Hedgehog (SHH) pathway facilitates the initiation, progression, and metastasis of Non-small cell lung cancer (NSCLC), confers drug resistance and renders a therapeutic interference option to lung cancer patients with poor prognosis. In this study, we screened and evaluated the specificity of a Chinese herb Scutellariabarbata D. Don extraction (SBE) in repressing SHH signaling pathway to block NSCLC progression. Our study confirmed that aberrant activation of the SHH signal pathway conferred more proliferative and invasive phenotypes to human lung cancer cells. This study revealed that SBE specifically repressed SHH signaling pathway to interfere the SHH-mediated NSCLC progression and metastasis via arresting cell cycle progression. We also found that SBE significantly sensitized lung cancer cells to chemotherapeutic agent DDP via repressing SHH components in vitro and in vivo. Mechanistic investigations indicated that SBE transcriptionally and specifically downregulated SMO and consequently attenuated the activities of GLI1 and its downstream targets in SHH signaling pathway, which interacted with cell cycle checkpoint enzymes to arrest cell cycle progression and lead to cellular growth inhibition and migration blockade. Collectively, our results suggest SBE as a novel drug candidate for NSCLC which specifically and sensitively targets SHH signaling pathway.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1381
Author(s):  
So Young Kim ◽  
Hyun Hwangbo ◽  
Min Yeong Kim ◽  
Seon Yeong Ji ◽  
Da Hye Kim ◽  
...  

Betulinic acid (BA) is a naturally occurring pentacyclic triterpenoid and generally found in the bark of birch trees (Betula sp.). Although several studies have been reported that BA has diverse biological activities, including anti-tumor effects, the underlying anti-cancer mechanism in bladder cancer cells is still lacking. Therefore, this study aims to investigate the anti-proliferative effect of BA in human bladder cancer cell lines T-24, UMUC-3, and 5637, and identify the underlying mechanism. Our results showed that BA induced cell death in bladder cancer cells and that are accompanied by apoptosis, necrosis, and cell cycle arrest. Furthermore, BA decreased the expression of cell cycle regulators, such as cyclin B1, cyclin A, cyclin-dependent kinase (Cdk) 2, cell division cycle (Cdc) 2, and Cdc25c. In addition, BA-induced apoptosis was associated with mitochondrial dysfunction that is caused by loss of mitochondrial membrane potential, which led to the activation of mitochondrial-mediated intrinsic pathway. BA up-regulated the expression of Bcl-2-accociated X protein (Bax) and cleaved poly-ADP ribose polymerase (PARP), and subsequently activated caspase-3, -8, and -9. However, pre-treatment of pan-caspase inhibitor markedly suppressed BA-induced apoptosis. Meanwhile, BA did not affect the levels of intracellular reactive oxygen species (ROS), indicating BA-mediated apoptosis was ROS-independent. Furthermore, we found that BA suppressed the wound healing and invasion ability, and decreased the expression of Snail and Slug in T24 and 5637 cells, and matrix metalloproteinase (MMP)-9 in UMUC-3 cells. Taken together, this is the first study showing that BA suppresses the proliferation of human bladder cancer cells, which is due to induction of apoptosis, necrosis, and cell cycle arrest, and decrease of migration and invasion. Furthermore, BA-induced apoptosis is regulated by caspase-dependent and ROS-independent pathways, and these results provide the underlying anti-proliferative molecular mechanism of BA in human bladder cancer cells.


Sign in / Sign up

Export Citation Format

Share Document