scholarly journals Plant communities with naturalized Elaeagnus angustifolia L. as a new vegetation element in Altai Krai (Southwestern Siberia, Russia)

2021 ◽  
Vol 7 ◽  
pp. 49-61
Author(s):  
Alena A. Shibanova ◽  
Natalya V. Ovcharova

Elaeagnus angustifolia L. (Russian olive) is a deciduous small tree or large multi-stemmed shrub that becomes invader in different countries all other the world. It is potentially invasive in some regions of Russia. In the beginning of 20th century, it was introduced to the steppe region of Altai Krai (Russia, southwestern Siberia) to prevent wind erosion. During last 20 years, Russian olive starts to create its own natural stands and to influence on native vegetation. This article presents the results of eco-coenotic survey of natural plant communities dominated by Elaeagnus angustifolia L. first described for Siberia and the analysis of their possible syntaxonomic position. The investigation conducted during summer season 2012 in the steppe region of Altai Krai allows revealing one new for Siberia association Elytrigio repentis–Elaeagnetum angustifoliae and no-ranged community Bromopsis inermis–Elaeagnus angustifolia which were included to the Class Nerio–Tamaricetea, to the Order Tamaricetalia ramosissimae. During the study, the following special features of communities have been described: polydominance of herbal layer, anthropogenic and grazing load, variation of the species richness, plant cover and vertical stratification into layers. These peculiarities mostly prove unestablished character of communities, all of them are relatively young (25–30 years). Russian olive shrubberies varies in moisture and saline regime, which connected with their existence in different landforms (lake alluvial plains, gentle slopes of lakes, low lake terraces).

2019 ◽  
pp. 91-94
Author(s):  
T. M. Lysenko ◽  
V. Yu. Neshatayeva ◽  
Z. V. Dutova

The International conference “Flora and conservation in the Caucasus: history and current state of knowledge” dedicated to the 130-year anniversary of the Perkalsky Arboretum took place at 22–25 of May 2019 in Pyatigorsk (Stavropol Territory) on the base of the Pyatigorsk Museum of local lore and natural history. The participants were from 11 cities of Russia and 7 Republics of the Caucasus and represented 14 institutions. Proceedings of the conference were published by the beginning of the meeting the book of abstracts includes 49 papers on the study of vascular plants, bryophytes, lichens and fungi, plant communities, as well as the protection of rare and endangered species, unique plant communities, and ecological problems in the Caucasus. The following geobotanical topics were highlighted in 13 papers: forest communities (3 reports), meadow and steppe vegetation (2), xeric open forests (2), communities of ecotone areas (1), structure of populations of rare plant species (3), as well as the history and current status of nature protected areas (2). The great emphasis has been focused on the study of floristic composition and plant populations. Thus, the conference showed that very few studies от vegetation are currently carried out in the Caucasus, and a lot of districts are not affected by the research. The greatest attention is paid to forest vegetation while meadow, steppe, alpine heath and xerophytic communities are studied rather poorly. Besides, there are “white spots” — mire, floodplain and aquatic vegetation. In nowadays, when the anthropogenic impact on the plant cover of the Caucasus is intensively increasing, it is especially important to study natural undisturbed communities preserved in protected natural areas. Another important issue is the conservation of the unique vegetation cover of the whole Caucasus. Thus, the study of vegetation of this region opens a wide field for researchers using various methods of modern plant science.


2013 ◽  
Vol 1 (9) ◽  
pp. 1300013 ◽  
Author(s):  
John F. Gaskin ◽  
Ruth A. Hufbauer ◽  
Steven M. Bogdanowicz

2019 ◽  
Vol 12 (02) ◽  
pp. 89-96 ◽  
Author(s):  
John F. Gaskin ◽  
Jose A. Andrés ◽  
Steven M. Bogdanowicz ◽  
Kimberly R. Guilbault ◽  
Ruth A. Hufbauer ◽  
...  

AbstractInvasions can be genetically diverse, and that diversity may have implications for invasion management in terms of resistance or tolerance to control methods. We analyzed the population genetics of Russian-olive (Elaeagnus angustifoliaL.), an ecologically important and common invasive tree found in many western U.S. riparian areas. We found three cpDNA haplotypes and, using 11 microsatellite loci, identified three genetic clusters in the 460 plants from 46 populations in the western United States. We found high levels of polymorphism in the microsatellites (5 to 15 alleles per locus; 106 alleles total). Our native-range sampling was limited, and we did not find a genetic match for the most common cpDNA invasive haplotype or a strong confirmation of origin for the most common microsatellite genetic cluster. We did not find geographic population structure (isolation by distance) across the U.S. invasion, but we did identify invasive populations that had the most diversity, and we suggest these as choices for initial biological control–release monitoring. Accessions from each genetic cluster, which coarsely represent the range of genetic diversity found in the invasion, are now included in potential classical biological control agent efficacy testing.


Hacquetia ◽  
2016 ◽  
Vol 15 (2) ◽  
pp. 21-35 ◽  
Author(s):  
Alina Baranova ◽  
Udo Schickhoff ◽  
Shunli Wang ◽  
Ming Jin

Abstract Environmental degradation of pasture areas in the Qilian Mountains (Gansu province, NW China) has increased in recent years. Soil erosion and loss of biodiversity caused by overgrazing is widespread. Changes in plant cover, however, have not been analysed so far. The aim of this paper is to identify plant communities and to detect grazing-induced changes in vegetation patterns. Quantitative and qualitative relevé data were collected for community classification and to analyse gradual changes in vegetation patterns along altitudinal and grazing gradients. Detrended correspondence analysis (DCA) was used to analyse variation in relationships between vegetation, environmental factors and differential grazing pressure. The results of the DCA showed apparent variation in plant communities along the grazing gradient. Two factors - altitude and exposure - had the strongest impact on plant community distribution. Comparing monitoring data for the most recent nine years, a trend of pasture deterioration, plant community successions and shift in dominant species becomes obvious. In order to increase grassland quality, sustainable pasture management strategies should be implemented.


2009 ◽  
Vol 2 (4) ◽  
pp. 292-300 ◽  
Author(s):  
James L. Hanula ◽  
Scott Horn ◽  
John W. Taylor

AbstractChinese privet is a major invasive shrub within riparian zones throughout the southeastern United States. We removed privet shrubs from four riparian forests in October 2005 with a Gyrotrac® mulching machine or by hand-felling with chainsaws and machetes to determine how well these treatments controlled privet and how they affected plant community recovery. One year after shrub removal a foliar application of 2% glyphosate was applied to privet remaining in the herbaceous layer. Three “desired-future-condition” plots were also measured to assess how well treatments shifted plant communities toward a desirable outcome. Both methods completely removed privet from the shrub layer without reducing nonprivet shrub cover and diversity below levels on the untreated control plots. Nonprivet plant cover on the mulched plots was > 60% by 2007, similar to the desired-future-condition plots and higher than the hand-felling plots. Both treatments resulted in higher nonprivet plant cover than the untreated controls. Ordination showed that after 2 yr privet removal plots were tightly grouped, suggesting that the two removal techniques resulted in the same plant communities, which were distinctly different from both the untreated controls and the desired-future-condition. Both treatments created open streamside forests usable for recreation and other human activities. However, much longer periods of time or active management of the understory plant communities, or both, will be required to change the forests to typical mature forest plant communities.


2012 ◽  
Vol 86 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Richard A. Fischer ◽  
Jonathon J. Valente ◽  
Michael P. Guilfoyle ◽  
Michael D. Kaller ◽  
Sam S. Jackson ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7038 ◽  
Author(s):  
Zachary A. Sylvain ◽  
David H. Branson ◽  
Tatyana A. Rand ◽  
Natalie M. West ◽  
Erin K. Espeland

Grassland restoration is largely focused on creating plant communities that match reference conditions. However, these communities reflect only a subset of the biodiversity of grassland systems. We conducted a multi-trophic study to assess ecosystem recovery following energy development for oil and gas extraction in northern US Great Plains rangelands. We compared soil factors, plant species composition and cover, and nematode trophic structuring between reclaimed oil and gas well sites (“reclaims”) that comprise a chronosequence of two—33 years since reclamation and adjacent, undeveloped rangeland at distances of 50 m and 150 m from reclaim edges. Soils and plant communities in reclaims did not match those on undeveloped rangeland even after 33 years. Reclaimed soils had higher salt concentrations and pH than undeveloped soils. Reclaims had lower overall plant cover, a greater proportion of exotic and ruderal plant cover and lower native plant species richness than undeveloped rangeland. However, nematode communities appear to have recovered following reclamation. Although total and omni-carnivorous nematode abundances differed between reclaimed well sites and undeveloped rangeland, community composition and structure did not. These findings suggest that current reclamation practices recover the functional composition of nematode communities, but not soil conditions or plant communities. Our results show that plant communities have failed to recover through reclamation: high soil salinity may create a persistent impediment to native plant growth and ecosystem recovery.


2016 ◽  
Vol 27 (4) ◽  
pp. 7-11
Author(s):  
Magdalena Malec ◽  
Sławomir Klatka ◽  
Marek Ryczek ◽  
Edyta Kruk

Abstract The main purpose of the work was to determine the scope and degree of the influence of exploitation on changes of plant cover of the raised peat-bog Baligówka, located in the Orawsko- Nowotarska Valley. The analysis was carried out based on 47 phytosociological surveys using the Braun-Blanquet method. Results of investigations allow to state that excessive drying and fires that took place on the examined object caused wastage of many precious species of plants, especially from the Oxycocco- Sphagnetea class. Their place occupied species belonging to other classes, such as Nardo-Callunetea and Molinio-Arrhenatheretea. The basic cause of drying of the peat-bog and, in consequence, dying of peat formation species is intensified exploitation and connected with this drainage, carried out in the half of the 20th century. Unfortunately, local people up to now illegally have harvested the peat on the investigated object. Decrease in groundwater level leads to accelerated decay of peat, changes in physical and chemical properties of a substratum and, in consequence, changes in trophic values of habitat, what causes great changes in species composition of plant communities.


Sign in / Sign up

Export Citation Format

Share Document