scholarly journals Mountain pastures of Qilian Shan: plant communities, grazing impact and degradation status (Gansu province, NW China)

Hacquetia ◽  
2016 ◽  
Vol 15 (2) ◽  
pp. 21-35 ◽  
Author(s):  
Alina Baranova ◽  
Udo Schickhoff ◽  
Shunli Wang ◽  
Ming Jin

Abstract Environmental degradation of pasture areas in the Qilian Mountains (Gansu province, NW China) has increased in recent years. Soil erosion and loss of biodiversity caused by overgrazing is widespread. Changes in plant cover, however, have not been analysed so far. The aim of this paper is to identify plant communities and to detect grazing-induced changes in vegetation patterns. Quantitative and qualitative relevé data were collected for community classification and to analyse gradual changes in vegetation patterns along altitudinal and grazing gradients. Detrended correspondence analysis (DCA) was used to analyse variation in relationships between vegetation, environmental factors and differential grazing pressure. The results of the DCA showed apparent variation in plant communities along the grazing gradient. Two factors - altitude and exposure - had the strongest impact on plant community distribution. Comparing monitoring data for the most recent nine years, a trend of pasture deterioration, plant community successions and shift in dominant species becomes obvious. In order to increase grassland quality, sustainable pasture management strategies should be implemented.

1989 ◽  
Vol 67 (4) ◽  
pp. 1126-1136 ◽  
Author(s):  
M. Muc ◽  
B. Freedman ◽  
J. Svoboda

A cluster analysis was used to apportion 136 stands in a High Arctic lowland among six vascular plant community types. These communities are described on the basis of the average prominence values of vascular species and the total cover of macroalgae, bryophytes, lichens, and vascular plants within the designated clusters of stands. The relationships among the community types was explored by a detrended correspondence analysis. The ordination of stands showed considerable floristic overlap among the most widespread plant communities on the lowland. This largely reflects the microtopographic heterogeneity of the sites, the relatively depauperate flora of the High Arctic, and the considerable ecological amplitude of the most prominent vascular plant species.


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1191
Author(s):  
Alyson Gagnon ◽  
Nicole J. Fenton ◽  
Pascal Sirois ◽  
Jean-François Boucher

Mining activities generate residues during the ore concentration process. These wastes are placed into large tailing storage facilities, and upon mine closure, these tailings must be reclaimed. This study aimed to determine how different reclamation methods, involving combinations of planted boreal woody species and organic amendments application (paper mill sludge biosolids, chicken manure, and topsoil) affected plant community diversity at two tailing storage facilities in Québec, Canada. We recorded the composition of the plant communities using the percent cover of plant species within 1 m × 1 m quadrats. At the Niobec mine site, paper mill sludge mixed with topsoil enhanced total plant cover was compared with the use of topsoil only; the former amendment, however, reduced evenness (J′) and diversity (1−D) due to the increased growth of grasses and invasive forbs. At the Mont-Wright site, plots having received paper mill sludge mixed with a “Norco” treatment (a mixture of chicken manure, hay, and grass seeds) produced the highest total plant cover. The Norco treatment mixed with topsoil and the single application of topsoil and biosolids produced the highest evenness (J′) and diversity (1−D). Overall, organic amendment applications promoted vegetation cover on tailings and contributed to the colonization of diverse plant communities.


1991 ◽  
Vol 69 (7) ◽  
pp. 1616-1627 ◽  
Author(s):  
Karen L. Kincheloe ◽  
Robert A. Stehn

Tundra vegetation and environmental variables were sampled on the Yukon–Kuskokwim delta in western Alaska. On transects extending from intertidal mudflat to upland tundra, we estimated cover by vascular plant species, soil moisture, salinity, relative elevation, depth to permafrost, and distance upriver from the coast. Two-way indicator species analysis (TWINSPAN) classified 21 communities. Ordination by detrended correspondence analysis (DECORANA) revealed a gradient correlated with the combination of elevation, permafrost depth, and salinity along the first axis for both upriver and downriver transects. Key words: Alaska, ordination, plant communities, salt marsh, tundra, Yukon–Kuskokwim delta.


Plant Ecology ◽  
2020 ◽  
Author(s):  
Kaitlyn E. Trepanier ◽  
Bradley D. Pinno ◽  
Ruth C. Errington

AbstractInformation on plant community assembly mechanisms is limited on forest reclamation sites after mining in the Canadian boreal forest. We assessed the change in plant community composition after Year 2 and Year 5 on species-rich forest floor mineral mix (FFMM) and species-poor peat mineral mix (PMM) reclamation soils by examining assembly mechanisms, i.e., seed bank, seed rain, biotic dispersal, vegetative expansion, and competition. Initial plant cover and diversity were greater on FFMM due to non-native species originating from the seed bank, which had 5× more seeds in the FFMM. By Year 5, both soil types had approximately 40% cover and 80 species richness due to the addition of wind and biotic-dispersed species and were characterized by a shift towards native species. Native forbs using vegetative reproduction expanded up to 2 m from FFMM into PMM. At Year 5 competition does not seem to have a large role in the structuring of the vegetation community. Overall, multiple factors were involved in structuring plant communities on reclamation sites, but we observed a general convergence between plant communities on different soil types in a relatively short period of time.


2012 ◽  
Vol 42 (3) ◽  
pp. 451-462 ◽  
Author(s):  
Pontus M.F. Lindgren ◽  
Thomas P. Sullivan

The effects of cattle ( Bos taurus L.) grazing on upland plant communities in forested rangelands are poorly understood. Cattle interactions with plant communities were studied in intensively managed (precommercially thinned (PCT) and repeatedly fertilized) silvopasture systems in young lodgepole pine ( Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests. We investigated the response of plant community abundance and diversity to cattle grazing and how these responses were affected by PCT and repeated fertilization. The study was conducted inside and outside cattle exclosures over 10 years in two regional replicates in south-central British Columbia, Canada. PCT and repeated fertilization increased both the amount and quality of forage. Effects of cattle grazing on plant community abundance and diversity were variable and significantly influenced by the nutrient status of the site. In fertilized stands, cattle grazing increased species richness and diversity, particularly for the herb layer, although these treatment effects often took several years to be expressed. In unfertilized stands, cattle grazing did not significantly reduce herb or shrub volumes; however, species richness and, to a lesser extent, diversity of the shrub layer declined. In a landscape context, management strategies for silvopasture should promote heterogeneity for conservation of plant diversity through a variety of grazing pressures, as well as forest enhancement treatments such as PCT and repeated fertilization.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7833 ◽  
Author(s):  
Chiaki Otsu ◽  
Hayato Iijima ◽  
Takuo Nagaike

Exclosures that exclude large herbivores are effective tools for the protection and restoration of grazed plant communities. However, previous studies have shown that the installation of an exclosure does not ensure plant community recovery. Our study aimed to determine the effects of the domination of unpalatable plants and the timing of exclosure installation on the plant community recovery process in montane grassland overgrazed by sika deer (Cervus nippon) in Japan. In this study we compared plant species composition and their cover with inside and outside exclosures installed at different times. Furthermore, we also compared them with those in 1981, when density of sika deer was very low. We used quadrats inside and outside fenced areas established in 2010 and 2011 to record both the cover and the height of species in each quadrat between 2011 and 2015. Plant cover, with the exception of graminoid species, increased in later years in all treatments. Non-metric multidimensional scaling (NMDS) plots showed significantly differentiated treatment trends. The species composition within the 2010 fenced area gradually shifted to greater similarity with the species composition reported in 1981. The plant community in the 2011 fenced area was slower to recover. Compositions of plant communities outside the fenced areas hardly changed from 2011 to 2015. Chao’s dissimilarity index decreased over time between the plant community surveyed between 2011 and 2015 and the past plant community in 1981 within the exclosures, and was higher in the 2011 fenced area than in the 2010 fenced area. In conclusion, we show that the reduction of graminoids and the time after exclosure installation were important for plant community recovery from deer grazing damage. A delay in exclosure installation of one year could result in a delay in plant community recovery of more than one year.


2021 ◽  
Author(s):  
Raúl Ochoa-Hueso ◽  
Rani Carroll ◽  
Juan Piñeiro ◽  
Sally A Power

Abstract Aims Given the key functional role of understorey plant communities and the substantial extent of forest cover at the global scale, investigating understorey community responses to elevated CO2 (eCO2) concentrations, and the role of soil resources in these responses, is important for understanding the ecosystem-level consequences of rising CO2 concentrations for forest ecosystems. Here, we evaluated how experimentally manipulated the availabilities of the two most limiting resources in an extremely phosphorus-limited eucalypt woodland in eastern Australia woodland (i.e. water and phosphorus) can modulate the response of the understorey community to eCO2 in terms of germination, phenology, cover, community composition, and leaf traits. Methods We collected soil containing native soil seed bank to grow experimental understorey plant communities under glasshouse conditions. Important findings Phosphorus addition increased total plant cover, particularly during the first four weeks of growth and under high-water conditions, a response driven by the graminoid component of the plant community. However, the treatment differences diminished as the experiment progressed, with all treatments converging at ~80% plant cover after ~11 weeks. In contrast, plant cover was not affected by eCO2. Multivariate analyses reflected temporal changes in the composition of plant communities, from pots where bare soil was dominant to high-cover pots dominated by a diverse community. However, both phosphorus addition and the interaction between water availability and CO2 affected the temporal trajectory of the plant community during the experiment. Elevated CO2 also increased community-level specific leaf area, suggesting that functional adaptation of plant communities to eCO2 may precede the onset of compositional responses. Given that the response of our seedbank-derived understorey community to eCO2 developed over time and was mediated by interactions with phosphorus and water availability. Our results suggest that a limited role of eCO2 in shaping plant communities in water-limited systems, particularly where low soil nutrient availability constrains productivity responses.


2019 ◽  
Author(s):  
Coline Deveautour ◽  
Sally Power ◽  
Kirk Barnett ◽  
Raul Ochoa-Hueso ◽  
Suzanne Donn ◽  
...  

Climate models project overall a reduction in rainfall amounts and shifts in the timing of rainfall events in mid-latitudes and sub-tropical dry regions, which threatens the productivity and diversity of grasslands. Arbuscular mycorrhizal fungi may help plants to cope with expected changes but may also be impacted by changing rainfall, either via the direct effects of low soil moisture on survival and function or indirectly via changes in the plant community. In an Australian mesic grassland (former pasture) system, we characterised plant and arbuscular mycorrhizal (AM) fungal communities every six months for nearly four years to two altered rainfall regimes: i) ambient, ii) rainfall reduced by 50% relative to ambient over the entire year and iii) total summer rainfall exclusion. Using Illumina sequencing, we assessed the response of AM fungal communities sampled from contrasting rainfall treatments and evaluated whether variation in AM fungal communities was associated with variation in plant community richness and composition. We found that rainfall reduction influenced the fungal communities, with the nature of the response depending on the type of manipulation, but that consistent results were only observed after more than two years of rainfall manipulation. We observed significant co-associations between plant and AM fungal communities on multiple dates. Predictive co-correspondence analyses indicated more support for the hypothesis that fungal community composition influenced plant community composition than vice versa. However, we found no evidence that altered rainfall regimes were leading to distinct co-associations between plants and AM fungi. Overall, our results provide evidence that grassland plant communities are intricately tied to variation in AM fungal communities. However, in this system, plant responses to climate change may not be directly related to impacts of altered rainfall regimes on AM fungal communities. Our study shows that AM fungal communities respond to changes in rainfall but that this effect was not immediate. The AM fungal community may influence the composition of the plant community. However, our results suggest that plant responses to altered rainfall regimes at our site may not be resulting via changes in the AM fungal communities.


Author(s):  
W.N. Reynolds

Following the 2007/08 drought, we experienced poor pasture production and persistence on our dairy farm in north Waikato, leading to decreased milksolids production and a greater reliance on bought-in feed. It is estimated that the cost of this to our farming operation was about $1300 per hectare per year in lost operating profit. While climate and black beetle were factors, they did not explain everything, and other factors were also involved. In the last 3 years we have changed our management strategies to better withstand dry summers, the catalyst for which was becoming the DairyNZ Pasture Improvement Focus Farm for the north Waikato. The major changes we made were to reduce stocking rate, actively manage pastures in summer to reduce over-grazing, and pay more attention to detail in our pasture renewal programme. To date the result has been a reduced need for pasture renewal, a lift in whole farm performance and increased profitability. Keywords: Focus farm, over-grazing, pasture management, pasture persistence, profitability


2009 ◽  
pp. 27-53
Author(s):  
A. Yu. Kudryavtsev

Diversity of plant communities in the nature reserve “Privolzhskaya Forest-Steppe”, Ostrovtsovsky area, is analyzed on the basis of the large-scale vegetation mapping data from 2000. The plant community classi­fication based on the Russian ecologic-phytocoenotic approach is carried out. 12 plant formations and 21 associations are distinguished according to dominant species and a combination of ecologic-phytocoenotic groups of species. A list of vegetation classification units as well as the characteristics of theshrub and woody communities are given in this paper.


Sign in / Sign up

Export Citation Format

Share Document