scholarly journals Foresight Workshop on Advances in Ocean Biological Observations: a sustained system for deep-ocean meroplankton

2020 ◽  
Vol 6 ◽  
Author(s):  
Marina Cunha ◽  
Luciana Génio ◽  
Florence Pradillon ◽  
Morane Clavel Henry ◽  
Stace Beaulieu ◽  
...  

Recent advances in technology have enabled an unprecedented development of underwater research, extending from near shore to the deepest regions of the globe. However, monitoring of biodiversity is not fully implemented in political agendas and biological observations in the deep ocean have been even more limited in space and time. The Foresight Workshop on Advances in Ocean Biological Observations: a sustained system for deep-ocean meroplankton was convened to to foster advances in the knowledge on deep-ocean invertebrate larval distributions and improve our understanding of fundamental deep-ocean ecological processes such as connectivity and resilience of benthic communities to natural and human-induced disturbance. This Meroplankton Observations Workshop had two specific goals: 1) review the state-of-the-art instrumentation available for meroplankton observations; 2) develop a strategy to implement technological innovations for in-situ meroplankton observation. Presentations and discussions are summarised in this report covering: i) key challenges and priorities for advancing the knowledge of deep-sea larval diversity and distribution: ii) recent developments in technology and future needs for plankton observation, iii) data integration and oceanographic modelling; iv) synergies and added value of a sustained observation system for meroplankton; v) steps for developing a sustained observation system for deep-ocean meroplankton and plans to maximise collaborative opportunities.

IUCrJ ◽  
2015 ◽  
Vol 2 (2) ◽  
pp. 292-304 ◽  
Author(s):  
Vanessa K. Peterson ◽  
Christine M. Papadakis

In situandin operandostudies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-artin situandin operandoX-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them.


2018 ◽  
Author(s):  
Henk-Jan Hoving ◽  
Svenja Christiansen ◽  
Eduard Fabrizius ◽  
Helena Hauss ◽  
Rainer Kiko ◽  
...  

Abstract. There is a need for cost-efficient tools to explore deep ocean ecosystems to collect baseline biological observations on pelagic fauna (zooplankton and nekton) and establish the vertical ecological zonation in the deep sea. The Pelagic In situ Observation System (PELAGIOS) is a 3000 m-rated slowly (0.5 m/s) towed camera system with LED illumination, an integrated oceanographic sensor set (CTD-O2) and telemetry allowing for online data acquisition and video inspection (Low Definition). The High Definition video is stored on the camera and later annotated using the VARS annotation software and related to concomitantly recorded environmental data. The PELAGIOS is particularly suitable for open ocean observations of gelatinous fauna, which is notoriously undersampled by nets and/or destroyed by fixatives. In addition to counts, diversity and distribution data as a function of depth and environmental conditions (T, S, O2), in situ observations of behavior, orientation and species interactions are collected. Here we present an overview of the technical setup of the PELAGIOS as well as example observations and analyses from the eastern tropical North Atlantic. Comparisons to MOCNESS net sampling and data from the Underwater Vision Profiler are provided and discussed.


Ocean Science ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. 1327-1340 ◽  
Author(s):  
Henk-Jan Hoving ◽  
Svenja Christiansen ◽  
Eduard Fabrizius ◽  
Helena Hauss ◽  
Rainer Kiko ◽  
...  

Abstract. There is a need for cost-efficient tools to explore deep-ocean ecosystems to collect baseline biological observations on pelagic fauna (zooplankton and nekton) and establish the vertical ecological zonation in the deep sea. The Pelagic In situ Observation System (PELAGIOS) is a 3000 m rated slowly (0.5 m s−1) towed camera system with LED illumination, an integrated oceanographic sensor set (CTD-O2) and telemetry allowing for online data acquisition and video inspection (low definition). The high-definition video is stored on the camera and later annotated using software and related to concomitantly recorded environmental data. The PELAGIOS is particularly suitable for open-ocean observations of gelatinous fauna, which is notoriously under-sampled by nets and/or destroyed by fixatives. In addition to counts, diversity, and distribution data as a function of depth and environmental conditions (T, S, O2), in situ observations of behavior, orientation, and species interactions are collected. Here, we present an overview of the technical setup of the PELAGIOS as well as example observations and analyses from the eastern tropical North Atlantic. Comparisons to data from the Multiple Opening/Closing Net and Environmental Sensing System (MOCNESS) net sampling and data from the Underwater Vision Profiler (UVP) are provided and discussed.


2020 ◽  
Vol 24 (18) ◽  
pp. 2181-2191
Author(s):  
Li Wang ◽  
Ziyi Li ◽  
Jiang Liu ◽  
Jianlin Han ◽  
Hiroki Moriwaki ◽  
...  

The development of an efficient and mild synthetic methodology for the construction of bioactive fluorine-containing molecules represents one of the hot research topics in general synthetic organic chemistry. In this review, some recent progresses achieved in the development of detrifluoroacetylatively generated mono-fluorinated enolates via CC bond cleavage and their asymmetric nucleophilic reactions for assembly of chiral quaternary C-F center containing compounds.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 536
Author(s):  
Mosab Kaseem ◽  
Karna Ramachandraiah ◽  
Shakhawat Hossain ◽  
Burak Dikici

This review presents an overview of the recent developments in the synthesis of layered double hydroxide (LDH) on the anodized films of Mg alloys prepared by either conventional anodizing or plasma electrolytic oxidation (PEO) and the applications of the formed composite ceramics as smart chloride traps in corrosive environments. In this work, the main fabrication approaches including co-precipitation, in situ hydrothermal, and an anion exchange reaction are outlined. The unique structure of LDH nanocontainers enables them to intercalate several corrosion inhibitors and release them when required under the action of corrosion-relevant triggers. The influences of different variables, such as type of cations, the concentration of salts, pH, and temperature, immersion time during the formation of LDH/anodic film composites, on the electrochemical response are also highlighted. The correlation between the dissolution rate of PEO coating and the growth rate of the LDH film was discussed. The challenges and future development strategies of LDH/anodic films are also highlighted in terms of industrial applications of these materials.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ulrike Braeckman ◽  
Francesca Pasotti ◽  
Ralf Hoffmann ◽  
Susana Vázquez ◽  
Angela Wulff ◽  
...  

AbstractClimate change-induced glacial melt affects benthic ecosystems along the West Antarctic Peninsula, but current understanding of the effects on benthic primary production and respiration is limited. Here we demonstrate with a series of in situ community metabolism measurements that climate-related glacial melt disturbance shifts benthic communities from net autotrophy to heterotrophy. With little glacial melt disturbance (during cold El Niño spring 2015), clear waters enabled high benthic microalgal production, resulting in net autotrophic benthic communities. In contrast, water column turbidity caused by increased glacial melt run-off (summer 2015 and warm La Niña spring 2016) limited benthic microalgal production and turned the benthic communities net heterotrophic. Ongoing accelerations in glacial melt and run-off may steer shallow Antarctic seafloor ecosystems towards net heterotrophy, altering the metabolic balance of benthic communities and potentially impacting the carbon balance and food webs at the Antarctic seafloor.


Polar Biology ◽  
2021 ◽  
Author(s):  
Philipp Neitzel ◽  
Aino Hosia ◽  
Uwe Piatkowski ◽  
Henk-Jan Hoving

AbstractObservations of the diversity, distribution and abundance of pelagic fauna are absent for many ocean regions in the Atlantic, but baseline data are required to detect changes in communities as a result of climate change. Gelatinous fauna are increasingly recognized as vital players in oceanic food webs, but sampling these delicate organisms in nets is challenging. Underwater (in situ) observations have provided unprecedented insights into mesopelagic communities in particular for abundance and distribution of gelatinous fauna. In September 2018, we performed horizontal video transects (50–1200 m) using the pelagic in situ observation system during a research cruise in the southern Norwegian Sea. Annotation of the video recordings resulted in 12 abundant and 7 rare taxa. Chaetognaths, the trachymedusaAglantha digitaleand appendicularians were the three most abundant taxa. The high numbers of fishes and crustaceans in the upper 100 m was likely the result of vertical migration. Gelatinous zooplankton included ctenophores (lobate ctenophores,Beroespp.,Euplokamissp., and an undescribed cydippid) as well as calycophoran and physonect siphonophores. We discuss the distributions of these fauna, some of which represent the first record for the Norwegian Sea.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1091
Author(s):  
Izaak Van Crombrugge ◽  
Rudi Penne ◽  
Steve Vanlanduit

Knowledge of precise camera poses is vital for multi-camera setups. Camera intrinsics can be obtained for each camera separately in lab conditions. For fixed multi-camera setups, the extrinsic calibration can only be done in situ. Usually, some markers are used, like checkerboards, requiring some level of overlap between cameras. In this work, we propose a method for cases with little or no overlap. Laser lines are projected on a plane (e.g., floor or wall) using a laser line projector. The pose of the plane and cameras is then optimized using bundle adjustment to match the lines seen by the cameras. To find the extrinsic calibration, only a partial overlap between the laser lines and the field of view of the cameras is needed. Real-world experiments were conducted both with and without overlapping fields of view, resulting in rotation errors below 0.5°. We show that the accuracy is comparable to other state-of-the-art methods while offering a more practical procedure. The method can also be used in large-scale applications and can be fully automated.


Sign in / Sign up

Export Citation Format

Share Document