Structure synthesis of 4-DOF parallel robot mechanisms based on screw theory

2004 ◽  
Vol 17 (04) ◽  
pp. 486 ◽  
Author(s):  
Hairong Fang
2010 ◽  
Vol 44-47 ◽  
pp. 1375-1379
Author(s):  
Da Chang Zhu ◽  
Li Meng ◽  
Tao Jiang

Parallel manipulators has been extensively studied by virtues or its high force-to-weight ratio and widely spread applications such as vehicle or flight simulator, a machine tool and the end effector of robot system. However, as each limb includes several rigid joints, assembling error is demanded strictly, especially in precision measurement and micro-electronics. On the other hand, compliant mechanisms take advantage of recoverable deformation to transfer or transform motion, force, or energy and the benefits of compliant mechanisms mainly come from the elimination of traditional rigid joints, but the traditional displacement method reduce the stiffness of spatial compliant parallel manipulators. In this paper, a new approach of structure synthesis of 3-DoF rotational compliant parallel manipulators is proposed. Based on screw theory, the structures of RRS type 3-DoF rotational spatial compliant parallel manipulator are developed. Experiments via ANSYS are conducted to give some validation of the theoretical analysis.


Author(s):  
Ting-Li Yang ◽  
An-Xin Liu ◽  
Qiong Jin ◽  
Yu-Feng Luo ◽  
Lu-Bin Hang ◽  
...  

Based on previous research results presented by authors, this paper proposes a novel systematic approach for structure synthesis of all parallel mechanisms (excluding Bennett mechanism etc), which is totally different from the approaches based on screw theory and based on displacement subgroup. Main characteristics of this approach are: (a) the synthesized mechanisms are non-instantaneous ones, and (b) only simple mathematical tools (vector algebra, theory of sets, etc.) are used. Main steps of this approach include: (1) Determining functional and structural requirements of the parallel mechanism to be synthesized, such as position and orientation characteristic (POC) matrix, degree of freedom (DOF), etc. (2) Type synthesis of branches. (3) Assembling of branches (determining the geometry constraint conditions among the branches attached between the moving platform and the frame, and checking the DOF). (4) Identifying the inactive joints. (5) Selecting the actuating joints. In order to illustrate the whole procedure, the type synthesis of spherical parallel mechanisms is studied using this approach.


2018 ◽  
Vol 42 (2) ◽  
pp. 164-176 ◽  
Author(s):  
Wanqiang Xi ◽  
Bai Chen ◽  
Yaoyao Wang ◽  
Feng Ju

For the synthesis of the required type about the multi-robot coordination system in industrial transportation, this paper presents a novel method in which each robot in the coordinated task is viewed as a branched chain of an equivalent parallel robot (EPR), which is converted into a problem for type synthesis of parallel robots. A theoretic method is proposed to represent the kinematic features of the mechanism’s end-effector and its position and pose in the world coordinate system. The basic concept of a robotic characteristic (C) set is given, and the corresponding algorithm is analyzed. Based on the theory of C set, the concrete steps for type synthesis of EPR are presented by analyzing the characteristics of its branched chains, and many EPR groups with end kinematic features for the C sets of the operational tasks are obtained. Then three translational (3T) operational requirements that can be extended to other degrees of freedom (DOF) are adopted, and the DOF of homogeneous and heterogeneous EPR are analyzed using screw theory. Finally the validation of the method is demonstrated by Adams, which shows that the two groups are able to complete the task.


2020 ◽  
Vol 17 (2) ◽  
pp. 172988142091995
Author(s):  
Shi Baoyu ◽  
Wu Hongtao

A new type of parallel robot ROBO_003 is presented. Its mechanisms, kinematics, and virtual prototype technology are introduced. The research of degrees of freedom (DOF) is based on screw theory, a set of screw is separated as a branch, which named as constrain screw. The type of three DOF gained by counting constrain screw, the moving platform’s frame, and base platform’s frame is set, respectively, a complete kinematic research including closed-form solutions for direct kinematic problem. The 3-D model of ROBO_003 is established using SOLIDWORKS; position and orientation of motion platform can be gained using ADMAS, which is a type of virtual prototype technology. The resultant shows that the structure of ROBO_003 is reasonable, three DOF of motion platform can be operated in a reasonable range, the solutions to the direct kinematics are right, and robot ROBO_003 can be used in many industrial fields. The research of this article provides a basis for the practical application of parallel robotics ROBO_003.


2017 ◽  
Vol 9 (5) ◽  
Author(s):  
Wei Li ◽  
Jorge Angeles

A novel parallel robot, dubbed the SDelta, is the subject of this paper. SDelta is a simpler alternative to both the well-known Stewart–Gough platform (SGP) and current three-limb, full-mobility parallel robots, as it contains fewer components and all its motors are located on the base. This reduces the inertial load on the system, making it a good candidate for high-speed operations. SDelta features a symmetric structure; its forward-displacement analysis leads to a system of three quadratic equations in three unknowns, which admits up to eight solutions, or half the number of those admitted by the SGP. The kinematic analysis, undertaken with a geometrical method based on screw theory, leads to two Jacobian matrices, whose singularity conditions are investigated. Instead of using the determinant of a 6 × 6 matrix, we derive one simple expression that characterizes the singularity condition. This approach is also applicable to a large number of parallel robots whose six actuation wrench axes intersect pairwise, such as all three-limb parallel robots whose limbs include, each, a passive spherical joint. The workspace is analyzed via a geometric method, while the dexterity analysis is conducted via discretization. Both show that the given robot has the potential to offer both large workspace and good dexterity with a proper choice of design variables.


Author(s):  
Hee-Byoung Choi ◽  
Atsushi Konno ◽  
Masaru Uchiyama

The closed-loop structure of a parallel robot results in complex kinematic singularities in the workspace. Singularity analysis become important in design, motion, planning, and control of parallel robot. The traditional method to determine a singular configurations is to find the determinant of the Jacobian matrix. However, the Jacobian matrix of a parallel manipulator is complex in general, and thus it is not easy to find the determinant of the Jacobian matrix. In this paper, we focus on the singularity analysis of a novel 4-DOFs parallel robot H4 based on screw theory. Two types singularities, i.e., the forward and inverse singularities, have been identified.


Sign in / Sign up

Export Citation Format

Share Document