Stability Prediction for High-speed Milling of Thin Walled Structures and Experimental Validation

2009 ◽  
Vol 45 (11) ◽  
pp. 146 ◽  
Author(s):  
Ruijun LIANG
2009 ◽  
Vol 69-70 ◽  
pp. 428-432 ◽  
Author(s):  
Qing Hua Song ◽  
Yi Wan ◽  
Shui Qing Yu ◽  
Xing Ai ◽  
J.Y. Pang

A method for predicting the stability of thin-walled workpiece milling process is described. The proposed approach takes into account the dynamic characteristics of workpiece changing with tool positions. A dedicated thin-walled workpiece representative of a typical industrial application is designed and modeled by finite element method (FEM). The workpiece frequency response function (FRF) depending on tool positions is obtained. A specific 3D stability chart (SC) for different spindle speeds and different tool positions is then elaborated by scanning the dynamic properties of workpiece along the machined direction throughout the machining process. The dynamic optimization of cutting parameters for increasing the chatter free material removal rate and surface finish is presented through considering the chatter vibration and forced vibration. The investigations are compared and verified by high speed milling experiments with flexible workpiece.


2010 ◽  
Vol 97-101 ◽  
pp. 1849-1852
Author(s):  
Tong Yue Wang ◽  
Ning He ◽  
Liang Li

Thin-walled structure is easy to vibrate in machining. The dynamic milling model of thin-walled workpiece is analyzed based on the analysis of degrees in two perpendicular directions of machine tool-workpiece system. In high speed milling of 2A12 aluminum alloy, the compensation method based on the modification of inertia effect is proposed and accurate cutting force coefficients are obtained. The machining system is divided into “spindle-cutter” and “workpiece-fixture” two sub-systems and the modal parameters of two sub-systems are acquired via modal analysis experiments. Finally, the stability lobes for high speed milling of 2A12 thin-walled workpiece are obtained by the use of these parameters. The results are verified against cutting tests.


2011 ◽  
Vol 105-107 ◽  
pp. 220-226 ◽  
Author(s):  
Yun Dong Sha ◽  
Zhi Jun Gao ◽  
Fei Xu

Thin-walled structures of future hypersonic flight vehicles will encounter complex loadings and exhibit obvious nonlinear responses. The thermal loads from high speed flow or engine jet flow can cause thermal buckling of thin-walled structures, such as Thermal Protection System (TPS). If the structures are loaded with intense acoustic loads simultaneously, large deflection nonlinear response, including snap-through, can be induced. Snap-through will give rise to large amplitude stress cycles and non-zero mean stress, which can lessen the fatigue life markedly. Starting from Hooker’s Law with thermal components, the large deflection governing equations of motion for simply-supported plate under thermo-acoustic loadings are derived. The partial differential equation (PDE) of motion which is difficult to solve is then transformed with Galerkin’s method to the system of ordinary differential equations (ODE) under modal coordinates. The displacement responses under different combinations of temperature increments and sound pressure levels are calculated by employing Runge-Kutta method. Typical thermo-acoustic responses are predicted: 1) random vibration around pre-buckled equilibrium position, 2) persistent snap-through between post-buckled positions, 3) intermittent snap-through, 4) vibration around one of the two post-buckled positions. By dividing the restoring force term in the equation into linear term and nonlinear one, the evolutions of each term are obtained to illustrate the mechanism of thermo-acoustic response and the contributions of each force, including shear force, thermal force and membrane force. Thus a further insight into thermo-acoustic response has been achieved.


2013 ◽  
Vol 467 ◽  
pp. 466-469 ◽  
Author(s):  
Martin Kováč ◽  
Jozef Peterka

The article deals with the proposed 5-axis strategies of high-speed milling of thin-walled parts. I proposed three ways of material take-in. It is an advantage that by this milling the shaft of the tool is not in contact with the machined surface. Each tool contact with the machined surface leaves an unwanted track on the parts surface. Article present new methods for five axes high speed milling flexible parts. Experimental part was five axis high speed milling and measuring quality of surface. Results were evaluated by statistic methods by software Minitab.


2017 ◽  
Vol 91 (5-8) ◽  
pp. 2819-2829 ◽  
Author(s):  
Jian-wei Ma ◽  
Zhen Liu ◽  
Zhen-yuan Jia ◽  
De-ning Song ◽  
Yuan-yuan Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document