scholarly journals Mathematical modeling of a continuous-flow packed-bed reactor with immobilized lipase for kinetic resolution of (R,S)-2-pentanol

2020 ◽  
Vol 44 (5) ◽  
pp. 1423-1429
Author(s):  
Aslı SOYER MALYEMEZ ◽  
Abdulwahab GIWA ◽  
Emine BAYRAKTAR ◽  
Ülkü MEHMETOĞLU

In this study, the kinetic resolution of (R,S)-2-pentanol via transesterification to achieve S-2-pentanol, a key intermediate required in the synthesis of anti-Alzheimer drugs, was investigated in continuous-flow packed-bed reactors. The effects of residence time, substrate concentration, and operation time of the enzyme were investigated. Under steady state conditions, 50% conversion and enantiomeric excess of the substrate (eeS)>99% were achieved at a residence time of 0.04 min. Productivity of the continuous-flow process (1.341 mmol/min/g)was about 4 times higher than that of the corresponding batch process (0.363 mmol/min/g). In addition, the mathematical modeling of the packed-bed reactor was conductedusing an axial dispersion model. Ping Pong Bi Bi kinetics was used in this model. Design parameters were determined and the developed equations were solved using an algorithm for solving boundary value problems for ordinary differential equations by collocation (bvp4c) using MATLAB. The results, obtained from the model, fitted the experimental data very well.

2014 ◽  
Vol 126 ◽  
pp. 151-160 ◽  
Author(s):  
Dang-Thuan Tran ◽  
Yi-Jan Lin ◽  
Ching-Lung Chen ◽  
Jo-Shu Chang

1985 ◽  
Vol 50 (10) ◽  
pp. 2122-2133 ◽  
Author(s):  
Jindřich Zahradník ◽  
Marie Fialová ◽  
Jan Škoda ◽  
Helena Škodová

An experimental study was carried out aimed at establishing a data base for an optimum design of a continuous flow fixed-bed reactor for biotransformation of ammonium fumarate to L-aspartic acid catalyzed by immobilized cells of the strain Escherichia alcalescens dispar group. The experimental program included studies of the effect of reactor geometry, catalytic particle size, and packed bed arrangement on reactor hydrodynamics and on the rate of substrate conversion. An expression for the effective reaction rate was derived including the effect of mass transfer and conditions of the safe conversion-data scale-up were defined. Suggestions for the design of a pilot plant reactor (100 t/year) were formulated and decisive design parameters of such reactor were estimated for several variants of problem formulation.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Hsiao-Ching Chen ◽  
Hen-Yi Ju ◽  
Tsung-Ta Wu ◽  
Yung-Chuan Liu ◽  
Chih-Chen Lee ◽  
...  

An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in atert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature52.1∘C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were83.31±2.07% and82.81±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.


Author(s):  
Qabul Dinanta Utama ◽  
Azis Boing Sitanggang ◽  
Dede Robiatul Adawiyah ◽  
Purwiyatno Hariyadi

Lipase-catalyzed transesterification between refined bleached deodorized palm olein (RBDO) and tricaprylin to produce medium-long-medium structured lipid (MLM-SL) in a packed bed reactor (PBR) has been investigated. A specific sn-1,3 commercial Lipozyme TL IM was used as biocatalyst.  Within this study, the progress of transesterification was monitored especially for triacylglycerol (TAG) formation with equivalent carbon number (ECN) of 32, presumably 1,3-dicapryoyl-2-oleoyl-sn-glycerol (COC). Transesterification conditions investigated were residence times (i.e., 15, 30, and 60 min) and enzyme loadings (2.0 and 4.5 g).  The highest yield of ECN 32 (13%) and transesterification degree (71%) were obtained at residence time of 15 mins for both enzyme loadings. Longer residence time seemed to facilitate lipid hydrolysis over transesterification. This was indicated by the number of peaks appearing in the high-performance liquid chromatography (HPLC) chromatograms and the reduction of fat slip melting point (SMP). Additionally, the highest productivity was obtained at 2.0 g enzyme loading. Conclusively, this study has demonstrated the potential use of packed-bed reactor with immobilized Lipozyme TL IM for continuous synthesis of MLM-SLs especially TAG with ECN32.


2015 ◽  
Vol 29 (5) ◽  
pp. 3168-3175 ◽  
Author(s):  
Sarah M. Meunier ◽  
Amin R. Rajabzadeh ◽  
Trevor G. Williams ◽  
Raymond L. Legge

Author(s):  
Amit Dhingra ◽  
Hong G. Im ◽  
Sujit Srinivas ◽  
Erdogan Gulari

Recent advances in PEM fuel cell systems have demonstrated their role in the production of clean and efficient power. However, due to complexities and safety concerns in the storage and transport of hydrogen, development of on-board fuel processing of hydrocarbon into hydrogen is being considered a critical issue in the success of the fuel cell technology in transportation application. In this paper, a novel concept of scalable silicon micro-reactor with an integrated platinum heater is developed for preferential CO oxidation. The performance of the micro-reactor is assessed and compared to a packed-bed reactor model. Complementary experimental and modeling efforts are made to identify the optimal thermal design parameters. It is demonstrated that the silicon micro-reactors successfully achieves the objectives of scalability without suffering from loss of efficiency due to the mass transfer limitations.


Sign in / Sign up

Export Citation Format

Share Document