Application of Ultrasonography for in vivo diagnosis of fatty liver disease in mink (Neovison vison)

Author(s):  
A. S. Hammer ◽  
T. Clausen
2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Xi Chen ◽  
Qing-Qing Tan ◽  
Xin-Rui Tan ◽  
Shi-Jun Li ◽  
Xing-Xing Zhang

AbstractNonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver disorders that is featured by the extensive deposition of fat in the hepatocytes. Current treatments are very limited due to its unclear pathogenesis. Here, we investigated the function of circ_0057558 and miR-206 in NAFLD. High-fat diet (HFD) feeding mouse was used as an in vivo NAFLD model and long-chain-free fatty acid (FFA)-treated liver cells were used as an in vitro NAFLD model. qRT-PCR was used to measure levels of miR-206, ROCK1 mRNA, and circ_0057558, while Western blotting was employed to determine protein levels of ROCK1, p-AMPK, AMPK, and lipogenesis-related proteins. Immunohistochemistry were performed to examine ROCK1 level. Oil-Red O staining was used to assess the lipid deposition in cells. ELISA was performed to examine secreted triglyceride (TG) level. Dual-luciferase assay was used to validate interactions of miR-206/ROCK1 and circ_0057558/miR-206. RNA immunoprecipitation was employed to confirm the binding of circ_0057558 with miR-206. Circ_0057558 was elevated while miR-206 was reduced in both in vivo and in vitro NAFLD models. miR-206 directly bound with ROCK1 3’-UTR and suppressed lipogenesis and TG secretion through targeting ROCK1/AMPK signaling. Circ_0057558 directly interacted with miR-206 to disinhibit ROCK1/AMPK signaling. Knockdown of circ_0057558 or overexpression of miR-206 inhibited lipogenesis, TG secretion and expression of lipogenesis-related proteins. ROCK1 knockdown reversed the effects of circ_0057558 overexpression. Injection of miR-206 mimics significantly ameliorated NAFLD progression in vivo. Circ_0057558 acts as a miR-206 sponge to de-repress the ROCK1/AMPK signaling and facilitates lipogenesis and TG secretion, which greatly contributes to NAFLD development and progression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruiwen Wang ◽  
Zhecheng Wang ◽  
Ruimin Sun ◽  
Rong Fu ◽  
Yu Sun ◽  
...  

Fatty acid β-oxidation is an essential pathogenic mechanism in nonalcoholic fatty liver disease (NAFLD), and TATA-box binding protein associated factor 9 (TAF9) has been reported to be involved in the regulation of fatty acid β-oxidation. However, the function of TAF9 in NAFLD, as well as the mechanism by which TAF9 is regulated, remains unclear. In this study, we aimed to investigate the signaling mechanism underlying the involvement of TAF9 in NAFLD and the protective effect of the natural phenolic compound Danshensu (DSS) against NAFLD via the HDAC1/TAF9 pathway. An in vivo model of high-fat diet (HFD)-induced NAFLD and a palmitic acid (PA)-treated AML-12 cell model were developed. Pharmacological treatment with DSS significantly increased fatty acid β-oxidation and reduced lipid droplet (LD) accumulation in NAFLD. TAF9 overexpression had the same effects on these processes both in vivo and in vitro. Interestingly, the protective effect of DSS was markedly blocked by TAF9 knockdown. Mechanistically, TAF9 was shown to be deacetylated by HDAC1, which regulates the capacity of TAF9 to mediate fatty acid β-oxidation and LD accumulation during NAFLD. In conclusion, TAF9 is a key regulator in the treatment of NAFLD that acts by increasing fatty acid β-oxidation and reducing LD accumulation, and DSS confers protection against NAFLD through the HDAC1/TAF9 pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Peng Yu ◽  
Xi Xu ◽  
Jing Zhang ◽  
Xuan Xia ◽  
Fen Xu ◽  
...  

A glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide (LR) had been experimentally and clinically shown to ameliorate nonalcoholic fatty liver disease (NAFLD). This study aimed to investigate the beneficial effect of LR on NAFLD in vivo and in vitro and its underlying molecular mechanism. The effects of LR were examined on the high-fat diet-induced in vivo model in mice and in vitro model of NAFLD in human HepG2 cells. Liver tissues and HepG2 cells were procured for measuring lipid metabolism, histological examination, and western blot analysis. LR administration significantly lowered the serum lipid profile and lipid disposition in vitro and in vivo because of the altered expression of enzymes on hepatic gluconeogenesis and lipid metabolism. Moreover, LR significantly decreased Src homology region 2 domain-containing phosphatase-1 (SHP1) and then increased the expression of phosphorylated-AMP-activated protein kinase (p-AMPK). However, the overexpression of SHP1 mediated by lentivirus vector reversed LR-induced improvement in lipid deposition. Moreover, SHP1 silencing could further increase the expression of p-AMPK to ameliorate lipid metabolism and relative lipogenic gene induced by LR. In addition, abrogation of AMPK by Compound C eliminated the protective effects of LR on lipid metabolism without changing the expression of SHP1. LR markedly prevented NAFLD through adjusting lipid metabolism via SHP1/AMPK signaling pathway.


2015 ◽  
Vol 62 ◽  
pp. S711-S712
Author(s):  
V. Marin ◽  
N. Rosso ◽  
M. Dal Ben ◽  
A. Raseni ◽  
C. Degrassi ◽  
...  

Author(s):  
Lingling Guan ◽  
Lan Guo ◽  
Heng Zhang ◽  
Hao Liu ◽  
Yuan Qiao ◽  
...  

Abstract Background and Purpose: The autophagic degradation of lipid droplets (LDs), termed lipophagy, is the main mechanism contributing to lipid consumption in hepatocytes. The identification of effective and safe natural compounds that target lipophagy to eliminate excess lipids may be a potential therapeutic strategy for non-alcoholic fatty liver disease (NAFLD). Here, we investigated the effects of naringin on NAFLD and the underlying mechanism. Experimental Approach: The role of naringin was investigated in mice fed a high-fat diet (HFD) to induce NAFLD, as well as in AML12 cells and primary hepatocytes stimulated by palmitate (PA). Transcription factor EB (TFEB)-knockdown AML12 cells and hepatocyte-specific TFEB-knockout mice were also used for the mechanism study. In vivo and in vitro studies were conducted using transmission electron microscopy, immunofluorescence techniques and western blot analysis. Key Results: We found that naringin treatment effectively relieved HFD-induced hepatic steatosis in mice and inhibited palmitate (PA)-induced lipid accumulation in hepatocytes. The increased p62 and LC3-II levels observed with excess lipid-support autophagosome accumulation and impaired autophagic flux. Treatment with naringin restored TFEB-mediated lysosomal biogenesis, thereby promoting the fusion of autophagosomes and lysosomes, restoring impaired autophagic flux and further inducing lipophagy. However, the knockdown of TFEB in hepatocytes or the hepatocyte-specific knockout of TFEB in mice abrogated naringin-induced lipophagy, which eliminated the therapeutic effect of naringin on hepatic steatosis. Conclusion and Implications: These results demonstrate that TFEB-mediated lysosomal biogenesis and subsequent lipophagy play essential roles in the ability of naringin to mitigate hepatic steatosis and suggest that naringin is a promising drug for treating or relieving NAFLD.


Sign in / Sign up

Export Citation Format

Share Document