Microbial Fuel Cell for Conversion of Chemical Energy to Electrical Energy from Food Industry Wastewater

2016 ◽  
Vol 9 (6) ◽  
pp. 481-485 ◽  
Author(s):  
Zuraidah Rasep ◽  
Nur Shahirah Mohd. Aripen ◽  
Mohd. Syazwan Mohd. Ghazali ◽  
Norilhamiah Yahya ◽  
Aida Safina Arida ◽  
...  
2017 ◽  
Vol 27 (4) ◽  
Author(s):  
Shaimaa Nghamish Mizil

In this study we tried to convert the chemical energy to electrical energy by using microbial fuel cell (MFC) consist of two chambers (anode and cathode) in presence of bacteria (Escherichia coli, pseudomonas aeroginosa ) and yeast (Saccharomyces cervesia) in the anode chamber to generate electrons. The system was started with glucose concentration 5gm/l in different pH value from (5-8). From the results we get the great generation of electricity with S. cervesia at pH 5 and the maximum voltage was 833mv. In case of bacteria that used in our experiment, the suitable pH for generation the electricity was (7).


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2312
Author(s):  
Jeongjin Yeo ◽  
Taeyoung Kim ◽  
Jae Jang ◽  
Yoonseok Yang

Power management systems (PMSs) are essential for the practical use of microbial fuel cell (MFC) technology, as they replace the unstable stacking of MFCs with step-up voltage conversion. Maximum-power extraction technology could improve the power output of MFCs; however, owing to the power consumption of the PMS operation, the maximum-power extraction point cannot deliver maximum power to the application load. This study proposes a practical power extraction for single MFCs, which reserves more electrical energy for an application load than conventional maximum power-point tracking (MPPT). When experimentally validated on a real MFC, the proposed method delivered higher output power during a longer PMS operation time than MPPT. The maximum power delivery enables more effective power conditioning of various micro-energy harvesting systems.


2017 ◽  
Vol 79 (5-2) ◽  
Author(s):  
Zul Hasrizal Bohari ◽  
Nur Asyhikin Azhari ◽  
Nuraina Nasuha Ab Rahman ◽  
Mohamad Faizal Baharom ◽  
Mohd Hafiz Jali ◽  
...  

Energy trending lately shown the need of new possible renewable energy. This paper studies about the capability and capacity generating of electricity by using Bio-electricity-Microbial Fuel Cell (Bio-MFC). Bio-MFC is the device that converts chemical energy to electrical energy by using microbes that exist in the sewage water. The energy contained in organic matter can be converted into useful electrical power. MFC can be operated by microbes that transfer electrons from anode to cathode for generating electricity. There are two major goals in this study. The first goal is to determine the performance characteristics of MFCs in this application. Specifically we investigate the relationship between the percentages of organic matter in a sample results in higher electricity production of MFCs power by that sample. As a result, the sewage (wastewater) chosen in the second series experiment because the sewage (wastewater) also produced the highest percentage of organic matter which is around 10%. Due to these, the higher percentage of organic matter corresponds to higher electricity production. The second goal is to determine the condition under which MFC work most efficiently to generating electricity. After get the best result of the combination for the electrode, which is combination of zinc and copper (900mV),the third series of experiments was coducted, that show the independent variable was in the ambient temperature. The reasons of these observations will be explained throughout the paper. The study proved that the electricity production of MFC can be increased by selecting the right condition of sample type, temperature and type of electrode. 


Author(s):  
Teng Howe Cheng ◽  
Kok Boon Ching ◽  
Chessda Uttraphan ◽  
Yee Mei Heong

Plant microbial fuel cell (P-MFC) is an electrochemical reactor that converts organic compounds to electrical energy through the catalytic reaction from electrochemically active bacteria (EAB). However, there is no sign of an attempt in developing the functional model in predicting the energy conversion and utilization of P-MFC. In this study, an analytic model is proposed to show the whole production process of the organic compound to electrical energy generation. <em>Pandanus Amaryllifolius</em> plant was used as sources of photosynthate, where biomass product from rhizodeposition, acetate was produced, and soil bacteria as the microbial culture, and air as the input to the cathode chamber. The proposed analytical model is able to predict the output of the P-MFC using the parameters from the experiment. The generated data from the model was then compared with the monitored data from the <em>Pandanus Amaryllifolius </em>P-MFC. The results show the electrical power output has a high similarity pattern with the bacterial growth curve model and able to achieve the coulombic efficiency of 95.32%.


2013 ◽  
pp. 22-39
Author(s):  
Daniel Leslie Tan ◽  
Julie Tan ◽  
Mark Anthony Atanacio ◽  
Ruel Delantar

Energy from edible and inedible root crop roots and tubers using galvanic cell and processing waste waters through microbial fuel cell (MFC) technology was harnessed. Electrolyte in the roots and tubers was tapped for galvanic cell and the microorganisms from waste waters act as catalyst in MFC. In galvanic cell, the optimized responses of badiang, cassava and sweetpotato were greatly affected by the surface area and distance between anode and cathode electrodes. An increase of nata-de-coco membrane size in MFC increased the voltage and current by 4.94 and 11.71 times, respectively. Increasing the width of anode also enhanced the responses. Different types of microorganisms were isolated from the biofilm anode of MFC. Their growth and proliferation which corresponded to the generation of electricity were also demonstrated in this study. A total of 54 bacterial isolates were collected from the biofilm at the anode of single-chamber MFC (SCMFC). The generated electricity observed using light emitting diodes (LED) showed potential both for galvanic and microbial fuel cell. The generated regression models are reliable tools in predicting desired outputs for future applications. These promising results demonstrated basic information on the electrical energy recovery from rootcrop waste waters and roots/tubers.


Sugar Tech ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 820-829
Author(s):  
Y. Córdova-Bautista ◽  
E. Ramírez-Morales ◽  
B. Pérez-Hernández ◽  
M. E. Ojeda-Morales ◽  
J. S. López-Lázaro ◽  
...  

2010 ◽  
Vol 101 (8) ◽  
pp. 2748-2754 ◽  
Author(s):  
Bibiana Cercado-Quezada ◽  
Marie-Line Delia ◽  
Alain Bergel

2018 ◽  
Vol 156 ◽  
pp. 01017 ◽  
Author(s):  
Carlito da Costa ◽  
Hadiyanto

Microbial fuel cell is an ecological innovative technology producing bioelectricity by utilizing microbes activity. Substituent energy is produced by changing the chemical energy to electrical energy through the catalytic reaction of microorganism. The research aims to find out the potency of bioelectricity produced by microalgae microbial fuel cell technology by utilizing the combination of tapioca wastewater and microalgae cultivation. This research is conducted through the ingredients preparation stage – microalgae culture, wastewater characterization, membrane and graphite activation, and the providing of other supporting equipment. The next stage is the MMFC arrangement, while the last one is bioelectricity measurement. The result of optimal bioelectricity production on the comparison of electrode 2 : 2, the power density is 44,33 mW/m2 on day 6, meanwhile, on that of 1 : 1, 20,18 mW/m2 power density on day 1 is obtained. It shows that bioelectricity can be produced from the combination of tapioca wastewater and microalgae culture through the microalgae-microbial fuel cell (MMFC) technology.This research is expected to be a reference for the next research particularly the one that observes the utilizing of microalgae as the part of new and renewable energy sources.


Sign in / Sign up

Export Citation Format

Share Document