scholarly journals Internal Gerstner waves on a sloping bed

2014 ◽  
Vol 34 (8) ◽  
pp. 3183-3192 ◽  
Author(s):  
Raphael Stuhlmeier ◽  
Keyword(s):  
2014 ◽  
Vol 60 (1-4) ◽  
pp. 87-105 ◽  
Author(s):  
Ryszard Staroszczyk

Abstract The paper is concerned with the problem of gravitational wave propagation in water of variable depth. The problem is solved numerically by applying an element-free Galerkin method. First, the proposed model is validated by comparing its predictions with experimental data for the plane flow in water of uniform depth. Then, as illustrations, results of numerical simulations performed for plane gravity waves propagating through a region with a sloping bed are presented. These results show the evolution of the free-surface elevation, displaying progressive steepening of the wave over the sloping bed, followed by its attenuation in a region of uniform depth. In addition, some of the results of the present model are compared with those obtained earlier by using the conventional finite element method.


2013 ◽  
Vol 93 (7) ◽  
pp. 1451-1457 ◽  
Author(s):  
Raphael Stuhlmeier
Keyword(s):  

2018 ◽  
Vol 848 ◽  
pp. 42-77 ◽  
Author(s):  
L. F. Chen ◽  
J. Zang ◽  
P. H. Taylor ◽  
L. Sun ◽  
G. C. J. Morgan ◽  
...  

Wave loading on marine structures is the major external force to be considered in the design of such structures. The accurate prediction of the nonlinear high-order components of the wave loading has been an unresolved challenging problem. In this paper, the nonlinear harmonic components of hydrodynamic forces on a bottom-mounted vertical cylinder are investigated experimentally. A large number of experiments were conducted in the Danish Hydraulic Institute shallow water wave basin on the cylinder, both on a flat bed and a sloping bed, as part of a European collaborative research project. High-quality data sets for focused wave groups have been collected for a wide range of wave conditions. The high-order harmonic force components are separated by applying the ‘phase-inversion’ method to the measured force time histories for a crest focused wave group and the same wave group inverted. This separation method is found to work well even for locally violent nearly-breaking waves formed from bidirectional wave pairs. It is also found that the $n$th-harmonic force scales with the $n$th power of the envelope of both the linear undisturbed free-surface elevation and the linear force component in both time variation and amplitude. This allows estimation of the higher-order harmonic shapes and time histories from knowledge of the linear component alone. The experiments also show that the harmonic structure of the wave loading on the cylinder is virtually unaltered by the introduction of a sloping bed, depending only on the local wave properties at the cylinder. Furthermore, our new experimental results reveal that for certain wave cases the linear loading is actually less than 40 % of the total wave loading and the high-order harmonics contribute more than 60 % of the loading. The significance of this striking new result is that it reveals the importance of high-order nonlinear wave loading on offshore structures and means that such loading should be considered in their design.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2403
Author(s):  
Asaad M. Armanuos ◽  
Nadhir Al-Ansari ◽  
Zaher Mundher Yaseen

Barrier walls are considered one of the most effective methods for facilitating the retreat of saltwater intrusion (SWI). This research plans to examine the effect of using barrier walls for controlling of SWI in sloped unconfined aquifers. The sloping unconfined aquifer is considered with three different bed slopes. The SEAWAT model is implemented to simulate the SWI. For model validation, the numerical results of the seawater wedge at steady state were compared with the analytical solution. Increasing the ratio of flow barrier depth (db/d) forced the saltwater interface to move seaward and increased the repulsion ratio (R). With a positive sloping bed, further embedding the barrier wall from 0.2 to 0.7 caused R to increase from 0.3% to 59%, while it increased from 1.8% to 41.7% and from 3.4% to 46.9% in the case of negative and horizontal slopes, respectively. Embedding the barrier wall to a db/d value of more than 0.4 achieved a greater R value in the three bed-sloping cases. Installing the barrier wall near the saltwater side with greater depth contributed to the retreat of the SWI. With a negative bed slope, moving the barrier wall from Xb/Lo = 1.0 toward the saltwater side (Xb/Lo = 0.2) increased R from 7.21% to 68.75%, whereas R increased from 5.3% to 67% for the horizontal sloping bed and from 5.1% to 64% for the positive sloping bed. The numerical results for the Akrotiri coastal aquifer confirm that the embedment of the barrier wall significantly affects the controlling of SWI by increasing the repulsion ratio (R) and decreasing the SWI length ratio (L/La). Cost-benefit analysis is recommended to determine the optimal design of barrier walls for increasing the cost-effectiveness of the application of barrier walls as a countermeasure for controlling and preventing SWI in sloped unconfined aquifers.


Author(s):  
Nobuhiro Matsunaga ◽  
Kosei Takehara ◽  
Yoichi Awaya
Keyword(s):  

Author(s):  
P.H. Simmins ◽  
S. Malkin

Inadequate feeding space allowance could limit the performance of the early-weaned pig. No information is available on the amount of space required as group size increases; this is now more typical for some of the novel welfare systems. It has been suggested that the early-weaned pigs tend to feed together for an initial period. Indications exist that, if inadequate feeding space is provided post-weaning, a proportion of piglets may suffer.The objective of the experiment was to investigate the effect of restricting access to feed on the performance of the early-weaned pig housed in large groups in a novel sloping bed weaner pen.


Author(s):  
K. A. Roopsekhar ◽  
V. Sundar

The hydrodynamic pressures due to regular waves around the circumference of a pipeline near a sloping rigid bed and placed parallel to the wave direction have been measured. The pressures were integrated to obtain the force time history, from which the peak horizontal and vertical forces were evaluated. The effects of relative clearance of pipe from the bed and its relative position from the toe of the sloping bed on the pressures and forces on the pipeline as a function scattering parameter and wave steepness are reported. The reflection characteristics of the sloping bed in the presence of the pipeline are reported as a function of surf similarity parameter and compared with the results from existing literature. The details of the model setup, experimental procedure, results and discussion are presented in this paper.


2004 ◽  
Vol 35 (2) ◽  
pp. 153-164 ◽  
Author(s):  
Subhasish Dey

An experimental study on critical bed shear-stress for initial movement of non-cohesive sediment particles under a steady-uniform stream flow on a combined lateral (across the flow direction) and longitudinal (streamwise direction) sloping bed is presented. The aim of this paper is to ascertain that the critical bed shear-stress on a combined lateral and longitudinal sloping bed is adequately represented by the product of critical bed shear-stress ratios for lateral and longitudinal sloping beds. Experiments were carried out with closed-conduit flow, in two ducts having a semicircular invert section, with three sizes of sediments. In laboratory flumes, the uniform flow is a difficult – if not impossible – proposition for a steeply sloping channel, and is impossible to obtain in an adversely sloping channel. To avoid this problem, the experiments were conducted with a closed-conduit flow. The critical bed shear-stresses for experimental runs were estimated from side-wall correction. The experimental data agree satisfactorily with the results obtained from the proposed formula.


Sign in / Sign up

Export Citation Format

Share Document